Writing R Extensions

Version 4.1.2 (2021-11-01)

R Core Team




This manual is for R, version 4.1.2 (2021-11-01).
Copyright (© 19992021 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.



Table of Contents

Acknowledgements....................... ... ..., 1
1 Creating R packages ............................ 2
1.1 Package structure......... ... 3
1.1.1 The DESCRIPTION file.......ovvrreieiiiiiiiiiiiiieeeenn 4
1.1.2  LACenSing .....covnnn i e 9
1.1.3 Package Dependencies ..............oooiiiiiiiiiiiiiia. 11
1.1.3.1 Suggested packages ........c.ccoiiiiiiiiiiiiiiii 13

1.1.4 The INDEX file. .. .ooueiii e 14
1.1.5 Package subdirectories........... ..., 15
1.1.6 Data in packages ... 19
1.1.7 Non-R scripts in packages. ..., 20
1.1.8 Specifying URLS. ... 22
1.2 Configure and cleanup............c.ooiiiiiiiiiiiiiiii.. 22
1.2.1 Using Makevars .. ....oouuetmiiie e, 26
1.2.1.1 OpenMP support ... 30
1.2.1.2 Using pthreads ... 32
1.2.1.3 Compiling in sub-directories.......................... 33

1.2.2 Configure example. ... ... 34
1.2.3 Using FOx code. ... ..o 35
1.2.4 Using CH4 code ..o 36
1.3 Checking and building packages................ccoiiiiiiiia... 38
1.3.1 Checking packages . ........oooviuiiiiiiiiiii .. 39
1.3.2 Building package tarballs........... ... ... L 43
1.3.3 Building binary packages ............ ... i 44
1.4 Writing package vignettes .......... ... o it 45
1.4.1 Encodings and vignettes............. ... i 47
1.4.2 Non-Sweave vignettes......... ..o 48
1.5 Package namespaces . ... ...t 49
1.5.1 Specifying imports and exports ............... ... 50
1.5.2 Registering S3 methods.............. ... ... L. 51
1.5.3 Load hooKks. ... ..o e 51
1.5.4 wuseDynLib..... ..o 52
1.5.5 Anexample ... 54
1.5.6 Namespaces with S4 classes and methods ................. 55
1.6 Writing portable packages ........... ... i i o7
1.6.1 PDFE SIZ€ ... oo 67
1.6.2 Check timing . ...t 67
1.6.3 Encoding iSSUes. .........ouuiiiiiiiiiiii i 68
1.6.4 Portable Cand C++4code..........cooiiiiiiiiiii... 69
1.6.4.1 Common symbols. ... 75

1.6.5 Binary distribution ......... ... . ... i 75

1.7 Diagnostic messages ........oouuiiiiiiiii 76



1.8 Internationalization.............. ... i, 7
1.8.1 C-level MeSSages . ... oot tet e 77
1.8.2 R mMeSSaZeS .ottt 78
1.8.3 Preparing translations ............ .. ... o i 78

1.9 CITATION files ..o ovei i e 79

1.10 Package types . ...oooiii e 80
1.10.1 Fromtend ....... ..o e 80

L1 SerVICES ettt et 80

Writing R documentation files................ 82

2.1 Rdformat...... .o 82
2.1.1 Documenting functions ............. ... i i 83
2.1.2 Documenting data sets............oooiiiiiiiiiiii 88
2.1.3 Documenting S4 classes and methods ..................... 89
2.1.4 Documenting packages......... ... 90

2.2 SeCHIONING . .« ottt e 90

2.3 Marking text . ..ot 90

2.4 Listsand tables ... 93

2.5 CroSs-Teferences . ... ...t e 93

2.6 Mathematics ... 94

2.7 FIgUIES. .. e e 95

2.8 TNSETtIONS ...t e 96

2.9 IndiCeS .. vt 96

2.10 Platform-specific documentation................... .. ... 97

2.11 Conditional text. ...t 97

2.12 DynamiC PageS . ... .ceetttttnn e 97

2.13 User-defined macros.........c.oouuitiiiiiiniiniiiennn.. 99

214 Encoding .......ooiuuiiiiii 100

2.15 Processing documentation files .......... ... ... ool 100

2.16 Editing Rd files...... ... 101

Tidying and profiling R code ................ 102

3.1 Tidying R code. ..o 102

3.2 Profiling R code forspeed ............... i 102

3.3 Profiling R code for memory use..................ciiiiii.. 104
3.3.1 Memory statistics from Rprof .......... ..., 105
3.3.2 Tracking memory allocations..................... .. ... ... 105
3.3.3 Tracing copies of an object .......... ... ... o il 105

3.4 Profiling compiled code.......... ... o i 106
341 LANUX .+ttt et e e e 106

3411 SpProf .o 106
3.4.1.2 oprofileand operf......... .. ... i 107
3.4.2  SOlaTiS ..o 110

3.4.3 macOS ... 110

ii



4 Debugging............... ..., 111
4.1 BrowSIng . .o oot 111
4.2 Debugging Rcode........coooiiii i 112
4.3 Checking memory acCess . .......couuutiienieeineeennnne.. 116

4.3.1 Using getorture. ......covuuiiiiii i 116
4.3.2 Using valgrind....... ... i 117
4.3.3 Using the Address Sanitizer.....................coi.... 119
4.3.3.1 Using the Leak Sanitizer............................ 121

4.3.4 Using the Undefined Behaviour Sanitizer................. 121
4.3.5 Other analyses with ‘clang’............. ... ... ... .. ... 123
4.3.6  Other analyses with ‘gec’ ... oL 123
4.3.7 Using ‘Dr. Memory’ .......c.oiiiiiiii i 123
4.3.8 Fortran array bounds checking....................... ..., 123
4.4 Debugging compiled code.............. . i 124
4.4.1 Finding entry points in dynamically loaded code ......... 125
4.4.2 Inspecting R objects when debugging .................... 126
4.4.3 Debugging on macOS......... ... i 128
4.5 Using Link-time Optimization ............... .. ... ... .. 128
System and foreign language interfaces..... 131
5.1 Operating SyStem acCeSS. ...« vuvtttt et 131
5.2 Interface functions .C and .Fortran.......................... 131
5.3 dyn.load and dyn.unload ...............iiiiiiiiiii 133
5.4 Registering native routines .......... ... i i, 135
5.4.1 Speed considerations. ........... ..., 138
5.4.2 Example: converting a package to use registration........ 140
5.4.3 Linking to native routines in other packages.............. 143
5.5 Creating shared objects .............o i 144
5.6 Interfacing C+4 code ... ..o 145
5.6.1 External CH++code ... 147
5.7 Fortran I/O ... 148
5.8 Linking to other packages ............ ... il 148
5.8.1 Unix-alikes..........o 149
5.82 WINdOwWS . ...t e 150
5.9 Handling R objects in C...........oiiiii i 150
5.9.1 Handling the effects of garbage collection ................ 152
5.9.2 Allocating StOrage . ......covreiitini i 154
5.9.3 Detailsof R types ... ..o 155
5.9.4 Attributes. ... ... 156
D.9.0  ClasSeS .ot vttt 158
5.9.6 Handling lists ... i 158
5.9.7 Handling character data............. ... ... ..., 159
5.9.8 Finding and setting variables .............. ... ... .. . 159
5.9.9 Some convenience functions............ ... ... o ol 160
5.9.9.1 Semi-internal convenience functions................. 161
5.9.10 Named objects and copying............ccoviiiiiiia... 161
5.10 Interface functions .Call and .External .................... 162

5.10.1 Calling .Call .....oiutiiiii i 162

iii



5.10.2 Calling .External .........oouiiiininiienninenenannnnnns 163
5.10.3 Missing and special values................. ..., 165
5.11 Evaluating R expressions from C............................ 165
5.11.1 Zero-finding ... ... 167
5.11.2  Calculating numerical derivatives....................... 169
5.12 Parsing R code from C........ ... ... ... ... 171
5.12.1 Accessing source references ..............c.ooiiiiiiia... 173
5.13 External pointers and weak references....................... 173
513.1 Anexample. ... ...t 175
5.14  Vector accessor functions............ ... ..o il 175
5.15 Character encoding iSSUES .. ......oviriiiiii i, 176
The R API: entry points for C code........ 177
6.1 Memory allocation .......... ... i 177
6.1.1 Transient storage allocation...................... ... ... 178
6.1.2 User-controlled memory ............... ..., 178
6.2 Error signaling.......... ..o 179
6.2.1 Error signaling from Fortran............................. 180
6.3 Random number generation ............... ... oL 180
6.4 Missing and IEEE special values ........................oo... 180
6.5 Printing....... ... e 181
6.5.1 Printing from Fortran ........... ... ... ... .o 181
6.6 Calling C from Fortran and vice versa ........................ 181
6.6.1 Fortran character strings ............ ... ... L. 183
6.6.2 Fortran LOGICAL ........ ... i, 185
6.6.3 Passing functions............. .o o i 185
6.7 Numerical analysis subroutines ............................... 186
6.7.1 Distribution functions ............. ... .. i 186
6.7.2 Mathematical functions.............. ... .. ... ... 188
6.7.3 Numerical Utilities ... 188
6.7.4 Mathematical constants ........... ... ... ... L. 190
6.8 Optimization........ ..o 191
6.9 Integration...........co i 192
6.10  Utility functions....... ... ..o i 193
6.11 Re-encoding.......... ..o 195
6.12 Condition handling and cleanup code........................ 196
6.13  Allowing interrupts. .........oeiuteiiii e 197
6.14 Platform and version information............................ 197
6.15 Inlining C functions.......... ..o i 198
6.16 Controlling visibility .......... ... i 199
6.17 Using these functions in your own C code.................... 200
6.18 Organization of header files.............. ... ... ... ... .. 200
Generic functions and methods.............. 202

7.1 Adding new generics . ..........o.uuuiiitiiit i 203

iv



8 Linking GUIs and other front-ends to R.... 204

8.1 Embedding R under Unix-alikes .............. ... ... 204
8.1.1 Compiling against the R library.......................... 206
8.1.2 Setting R callbacks......... .. ..o o i 207
8.1.3 Registering symbols ........... ... i 210
8.1.4 Meshing event loops......... ... o i 210
8.1.5 Threading iSSUES. ......ooiutiiiii e 211

8.2 Embedding R under Windows ........... ... it 212
8.2.1 Using (D)COM. .. ... 212
8.2.2 Calling R.dll directly ....... ... 212
8.2.3 Finding RRHOME ... ... ... .. . . .. .. 215

Function and variable index ..................... 217

Concept index ................ ... . ... ..., 221



Acknowledgements

The contributions to early versions of this manual by Saikat DebRoy (who wrote the first
draft of a guide to using .Call and .External) and Adrian Trapletti (who provided infor-
mation on the C++ interface) are gratefully acknowledged.



1 Creating R packages

Packages provide a mechanism for loading optional code, data and documentation as needed.
The R distribution itself includes about 30 packages.

In the following, we assume that you know the library() command, including its
1ib.loc argument, and we also assume basic knowledge of the R CMD INSTALL utility. Oth-
erwise, please look at R’s help pages on

?library
?INSTALL

before reading on.

For packages which contain code to be compiled, a computing environment including
a number of tools is assumed; the “R Installation and Administration” manual describes
what is needed for each OS.

Once a source package is created, it must be installed by the command R CMD INSTALL.
See Section “Add-on-packages” in R Installation and Administration.

Other types of extensions are supported (but rare): See Section 1.10 [Package types],
page 80.

Some notes on terminology complete this introduction. These will help with the reading
of this manual, and also in describing concepts accurately when asking for help.

A package is a directory of files which extend R, a source package (the master files of a
package), or a tarball containing the files of a source package, or an installed package, the
result of running R CMD INSTALL on a source package. On some platforms (notably macOS
and Windows) there are also binary packages, a zip file or tarball containing the files of an
installed package which can be unpacked rather than installing from sources.

A package is not! a library. The latter is used in two senses in R documentation.

e A directory into which packages are installed, e.g. /usr/1ib/R/1library: in that sense
it is sometimes referred to as a library directory or library tree (since the library is a
directory which contains packages as directories, which themselves contain directories).

e That used by the operating system, as a shared, dynamic or static library or (especially
on Windows) a DLL, where the second L stands for ‘library’. Installed packages may
contain compiled code in what is known on Unix-alikes as a shared object and on
Windows as a DLL. The concept of a shared library (dynamic library on macOS) as
a collection of compiled code to which a package might link is also used, especially
for R itself on some platforms. On most platforms these concepts are interchangeable
(shared objects and DLLs can both be loaded into the R process and be linked against),
but macOS distinguishes between shared objects (extension .so) and dynamic libraries
(extension .dylib).

There are a number of well-defined operations on source packages.

e The most common is installation which takes a source package and installs it in a
library using R CMD INSTALL or install.packages.

1 although this is a persistent mis-usage. It seems to stem from S, whose analogues of R’s packages were
officially known as library sections and later as chapters, but almost always referred to as libraries.



Chapter 1: Creating R packages 3

e Source packages can be built. This involves taking a source directory and creating a
tarball ready for distribution, including cleaning it up and creating PDF documenta-
tion from any wvignettes it may contain. Source packages (and most often tarballs) can
be checked, when a test installation is done and tested (including running its exam-
ples); also, the contents of the package are tested in various ways for consistency and
portability.

e Compilation is not a correct term for a package. Installing a source package which
contains C, C++ or Fortran code will involve compiling that code. There is also the
possibility of ‘byte’ compiling the R code in a package (using the facilities of package
compiler): nowadays this is enabled by default for all packages. So compiling a package
may come to mean byte-compiling its R code.

e It used to be unambiguous to talk about loading an installed package using 1ibrary (),
but since the advent of package namespaces this has been less clear: people now of-
ten talk about loading the package’s namespace and then attaching the package so
it becomes visible on the search path. Function library performs both steps, but a
package’s namespace can be loaded without the package being attached (for example
by calls like splines: :ns).

The concept of lazy loading of code or data is mentioned at several points. This is part
of the installation, always selected for R code but optional for data. When used the R
objects of the package are created at installation time and stored in a database in the R
directory of the installed package, being loaded into the session at first use. This makes the
R session start up faster and use less (virtual) memory. (For technical details, see Section
“Lazy loading” in R Internals.)

CRAN is a network of WWW sites holding the R distributions and contributed code,
especially R packages. Users of R are encouraged to join in the collaborative project and to
submit their own packages to CRAN: current instructions are linked from https://CRAN.
R-project.org/banner.shtml#submitting.

1.1 Package structure

The sources of an R package consist of a subdirectory containing the files DESCRIPTION
and NAMESPACE, and the subdirectories R, data, demo, exec, inst, man, po, src, tests,
tools and vignettes (some of which can be missing, but which should not be empty).
The package subdirectory may also contain files INDEX, configure, cleanup, LICENSE,
LICENCE and NEWS. Other files such as INSTALL (for non-standard installation instructions),
README/README .md?, or ChangeLog will be ignored by R, but may be useful to end users.
The utility R CMD build may add files in a build directory (but this should not be used for
other purposes).

Except where specifically mentioned,® packages should not contain Unix-style ‘hidden’
files/directories (that is, those whose name starts with a dot).

2 This seems to be commonly used for a file in ‘markdown’ format. Be aware that most users of R will
not know that, nor know how to view such a file: platforms such as macOS and Windows do not have
a default viewer set in their file associations. The CRAN package web pages render such files in HTML:

the converter used expects the file to be encoded in UTF-8.

3 currently, top-level files .Rbuildignore and .Rinstignore, and vignettes/.install_extras.


https://CRAN.R-project.org/banner.shtml#submitting
https://CRAN.R-project.org/banner.shtml#submitting

Chapter 1: Creating R packages 4

The DESCRIPTION and INDEX files are described in the subsections below. The NAMESPACE
file is described in the section on Section 1.5 [Package namespaces|, page 49.

The optional files configure and cleanup are (Bourne) shell scripts which are, re-
spectively, executed before and (if option --clean was given) after installation on Unix-
alikes, see Section 1.2 [Configure and cleanup], page 22. The analogues on Windows are
configure.win and cleanup.win.

For the conventions for files NEWS and ChangeLog in the GNU project see https://www.
gnu.org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package. Because
some file systems (e.g., those on Windows and by default on macOS) are not case-sensitive,
to maintain portability it is strongly recommended that case distinctions not be used to
distinguish different packages. For example, if you have a package named foo, do not also
create a package named Foo.

To ensure that file names are valid across file systems and supported operating systems,
the ASCII control characters as well as the characters ‘"', ¥’ ‘i’ ¢/’ <’ 7 27\,
and ‘|’ are not allowed in file names. In addition, files with names ‘con’, ‘prn’, ‘aux’,
‘clock$’, ‘nul’, ‘coml’ to ‘com9’; and ‘1ptl’ to ‘lpt9’ after conversion to lower case and
stripping possible “extensions” (e.g., ‘lpt5.foo.bar’), are disallowed. Also, file names in
the same directory must not differ only by case (see the previous paragraph). In addition,
the basenames of ‘.Rd’ files may be used in URLs and so must be ASCII and not contain %.
For maximal portability filenames should only contain only ASCII characters not excluded
already (that is A-Za-z0-9._!#$%&+,;=0"({}’[] — we exclude space as many utilities
do not accept spaces in file paths): non-English alphabetic characters cannot be guaranteed
to be supported in all locales. It would be good practice to avoid the shell metacharacters
O{>’[1%$": ~ is also used as part of ‘8.3 filenames on Windows. In addition, packages
are normally distributed as tarballs, and these have a limit on path lengths: for maximal
portability 100 bytes.

A source package if possible should not contain binary executable files: they are not
portable, and a security risk if they are of the appropriate architecture. R CMD check will
warn about them? unless they are listed (one filepath per line) in a file BinaryFiles at the
top level of the package. Note that CRAN will not accept submissions containing binary
files even if they are listed.

The R function package.skeleton can help to create the structure for a new package:
see its help page for details.

1.1.1 The DESCRIPTION file
The DESCRIPTION file contains basic information about the package in the following format:

4 false positives are possible, but only a handful have been seen so far.


https://www.gnu.org/prep/standards/standards.html#Documentation
https://www.gnu.org/prep/standards/standards.html#Documentation

Chapter 1: Creating R packages 5

( )
Package: pkgname

Version: 0.5-1

Date: 2015-01-01

Title: My First Collection of Functions

Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),
email = "Joe.Developer@some.domain.net"),
person("Pat", "Developer", role = "aut"),
person("A.", "User", role = "ctb",
email = "A.User@whereever.net"))

Author: Joe Developer [aut, cre],
Pat Developer [aut],
A. User [ctb]
Maintainer: Joe Developer <Joe.Developer@some.domain.net>
Depends: R (>= 3.1.0), nlme
Suggests: MASS
Description: A (one paragraph) description of what
the package does and why it may be useful.
License: GPL (>= 2)
URL: https://www.r-project.org, http://www.another.url
BugReports: https://pkgname.bugtracker.url
- J

The format is that of a version of a ‘Debian Control File’ (see the help for ‘read.dcf’ and
https://www.debian.org/doc/debian-policy/ch-controlfields.html: R does not
require encoding in UTF-8 and does not support comments starting with ‘#’). Fields start
with an ASCII name immediately followed by a colon: the value starts after the colon and
a space. Continuation lines (for example, for descriptions longer than one line) start with
a space or tab. Field names are case-sensitive: all those used by R are capitalized.

For maximal portability, the DESCRIPTION file should be written entirely in ASCIT — if
this is not possible it must contain an ‘Encoding’ field (see below).

Several optional fields take logical values: these can be specified as ‘yes’, ‘true’, ‘no’ or
‘false’: capitalized values are also accepted.

The ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’, ‘Author’, and
‘Maintainer’ fields are mandatory, all other fields are optional. Fields ‘Author’ and
‘Maintainer’ can be auto-generated from ‘Authors@R’, and may be omitted if the latter is
provided: however if they are not ASCII we recommend that they are provided.

The mandatory ‘Package’ field gives the name of the package. This should contain only
(ASCII) letters, numbers and dot, have at least two characters and start with a letter and
not end in a dot. If it needs explaining, this should be done in the ‘Description’ field (and
not the ‘Title’ field).

The mandatory ‘Version’ field gives the version of the package. This is a sequence of at
least two (and usually three) non-negative integers separated by single ‘.’ or ‘=’ characters.
The canonical form is as shown in the example, and a version such as ‘0.01’ or ‘0.01.0’
will be handled as if it were ‘0.1-0". It is not a decimal number, so for example 0.9 < 0.75
since 9 < 75.

The mandatory ‘License’ field is discussed in the next subsection.

The mandatory ‘Title’ field should give a short description of the package. Some
package listings may truncate the title to 65 characters. It should use title case (that is, use
capitals for the principal words: tools: :toTitleCase can help you with this), not use any
markup, not have any continuation lines, and not end in a period (unless part of ...). Do


https://www.debian.org/doc/debian-policy/ch-controlfields.html

Chapter 1: Creating R packages 6

not repeat the package name: it is often used prefixed by the name. Refer to other packages
and external software in single quotes, and to book titles (and similar) in double quotes.

The mandatory ‘Description’ field should give a comprehensive description of what the
package does. One can use several (complete) sentences, but only one paragraph. It should
be intelligible to all the intended readership (e.g. for a CRAN package to all CRAN users).
It is good practice not to start with the package name, ‘This package’ or similar. As with
the ‘Title’ field, double quotes should be used for quotations (including titles of books and
articles), and single quotes for non-English usage, including names of other packages and
external software. This field should also be used for explaining the package name if nec-
essary. URLs should be enclosed in angle brackets, e.g. ‘<https://www.r-project.org>’
see also Section 1.1.8 [Specifying URLs], page 22.

The mandatory ‘Author’ field describes who wrote the package. It is a plain text field
intended for human readers, but not for automatic processing (such as extracting the email
addresses of all listed contributors: for that use ‘Authors@R’). Note that all significant
contributors must be included: if you wrote an R wrapper for the work of others included
in the src directory, you are not the sole (and maybe not even the main) author.

The mandatory ‘Maintainer’ field should give a single name followed by a wvalid (RFC
2822) email address in angle brackets. It should not end in a period or comma. This field
is what is reported by the maintainer function and used by bug.report. For a CRAN
package it should be a person, not a mailing list and not a corporate entity: do ensure that
it is valid and will remain valid for the lifetime of the package.

Note that the display name (the part before the address in angle brackets) should be
enclosed in double quotes if it contains non-alphanumeric characters such as comma or
period. (The current standard, RFC 5322, allows periods but RFC 2822 did not.)

Both ‘Author’ and ‘Maintainer’ fields can be omitted if a suitable ‘Authors@R’ field
is given. This field can be used to provide a refined and machine-readable description of
the package “authors” (in particular specifying their precise roles), via suitable R code. It
should create an object of class "person", by either a call to person or a series of calls (one
per “author”) concatenated by c(): see the example DESCRIPTION file above. The roles
can include ‘"aut"’ (author) for full authors, ‘"cre"’ (creator) for the package maintainer,
and ‘"ctb"’ (contributor) for other contributors, ‘"cph"’ (copyright holder, which should be
the legal name for an institution or corporate body), among others. See ?person for more
information. Note that no role is assumed by default. Auto-generated package citation
information takes advantage of this specification. The ‘Author’ and ‘Maintainer’ fields are
auto-generated from it if needed when building® or installing.

An optional ‘Copyright’ field can be used where the copyright holder(s) are not the
authors. If necessary, this can refer to an installed file: the convention is to use file
inst/COPYRIGHTS.

The optional ‘Date’ field gives the release date of the current version of the package.
It is strongly recommended® to use the ‘yyyy-mm-dd’ format conforming to the ISO 8601
standard.

The  ‘Depends’, ‘Imports’, ‘Suggests’, ‘Enhances’, ‘LinkingTo’  and
‘Additional_repositories’ fields are discussed in a later subsection.

5 at least if this is done in a locale which matches the package encoding.
6 and required by CRAN, so checked by R CMD check --as-cran.



Chapter 1: Creating R packages 7

Dependencies external to the R system should be listed in the ‘SystemRequirements’
field, possibly amplified in a separate README file. This includes specifying a non-default
C++ standard and the need for GNU make.

The ‘URL’ field may give a list of URLs separated by commas or whitespace, for example
the homepage of the author or a page where additional material describing the software can
be found. These URLs are converted to active hyperlinks in CRAN package listings. See
Section 1.1.8 [Specifying URLs]|, page 22.

The ‘BugReports’ field may contain a single URL to which bug reports about the package
should be submitted. This URL will be used by bug.report instead of sending an email
to the maintainer. A browser is opened for a ‘http://’ or ‘https://’ URL. To specify
another email address for bug reports, use ‘Contact’ instead: however bug.report will try
to extract an email address (preferably from a ‘mailto:’ URL or enclosed in angle brackets)
from ‘BugReports’.

Base and recommended packages (i.e., packages contained in the R source distribution
or available from CRAN and recommended to be included in every binary distribution of R)
have a ‘Priority’ field with value ‘base’ or ‘recommended’, respectively. These priorities
must not be used by other packages.

A ‘Collate’ field can be used for controlling the collation order for the R code files
in a package when these are processed for package installation. The default is to collate
according to the ‘C’ locale. If present, the collate specification must list all R code files
in the package (taking possible OS-specific subdirectories into account, see Section 1.1.5
[Package subdirectories], page 15) as a whitespace separated list of file paths relative to
the R subdirectory. Paths containing white space or quotes need to be quoted. An OS-
specific collation field (‘Collate.unix’ or ‘Collate.windows’) will be used in preference to
‘Collate’.

The ‘LazyData’ logical field controls whether the R datasets use lazy-loading. A
‘LazyLoad’ field was used in versions prior to 2.14.0, but now is ignored.

The ‘KeepSource’ logical field controls if the package code is sourced using keep . source
= TRUE or FALSE: it might be needed exceptionally for a package designed to always be used
with keep.source = TRUE.

The ‘ByteCompile’ logical field controls if the package R code is to be byte-compiled on
installation: the default is to byte-compile. This can be overridden by installing with flag
--no-byte-compile.

The ‘UseLT0’ logical field is used on a Unix-alike to indicate if source code in the package
is to be compiled with Link-Time Optimization (see Section 4.5 [Using Link-time Optimiza-
tion], page 128) if R was installed with --enable-1to (default true) or --enable-1to=R
(default false). This can be overridden by by the flags ~——use-LTO and --no-use-LT0. LTO
is said to give most size and performance improvements for large and complex (heavily
templated) C++ projects.

The ‘StagedInstall’ logical field controls if package installation is ‘staged’, that is done
to a temporary location and moved to the final location when successfully completed. This
field was introduced in R 3.6.0 and it true by default: it is considered to be a temporary
measure which may be withdrawn in future.

The ‘ZipData’ logical field has been ignored since R 2.13.0.



Chapter 1: Creating R packages 8

The ‘Biarch’ logical field is used on Windows to select the INSTALL option --force-
biarch for this package.

The ‘BuildVignettes’ logical field can be set to a false value to stop R CMD build from
attempting to build the vignettes, as well as preventing” R CMD check from testing this.
This should only be used exceptionally, for example if the PDF's include large figures which
are not part of the package sources (and hence only in packages which do not have an Open
Source license).

The ‘VignetteBuilder’ field names (in a comma-separated list) packages that provide
an engine for building vignettes. These may include the current package, or ones listed
in ‘Depends’, ‘Suggests’ or ‘Imports’. The utils package is always implicitly appended.
See Section 1.4.2 [Non-Sweave vignettes], page 48, for details. Note that if, for exam-
ple, a vignette has engine ‘knitr::rmarkdown’, then knitr (https://CRAN.R-project.
org/package=knitr) provides the engine but both knitr and rmarkdown (https://CRAN.
R-project.org/package=rmarkdown) are needed for using it, so both these packages need
to be in the ‘VignetteBuilder’ field and at least suggested (as rmarkdown is only sug-
gested by knitr, and hence not available automatically along with it). Many packages using
knitr (https://CRAN.R-project.org/package=knitr) also need the package formatR
(https://CRAN.R-project . org/package=formatR) which it suggests and so the user
package needs to do so too and include this in ‘VignetteBuilder’.

If the DESCRIPTION file is not entirely in ASCII it should contain an ‘Encoding’ field
specifying an encoding. This is used as the encoding of the DESCRIPTION file itself and
of the R and NAMESPACE files, and as the default encoding of .Rd files. The examples are
assumed to be in this encoding when running R CMD check, and it is used for the encoding
of the CITATION file. Only encoding names latinl, latin2 and UTF-8 are known to be
portable. (Do not specify an encoding unless one is actually needed: doing so makes the
package less portable. If a package has a specified encoding, you should run R CMD build
etc in a locale using that encoding.)

The ‘NeedsCompilation’ field should be set to "yes" if the package contains native code
which needs to be compiled, otherwise "no" (when the package could be installed from
source on any platform without additional tools). This is used by install.packages (type
= "both") in R >= 2.15.2 on platforms where binary packages are the norm: it is normally
set by R CMD build or the repository assuming compilation is required if and only if the
package has a src directory.

The ‘0S_type’ field specifies the OS(es) for which the package is intended. If present, it
should be one of unix or windows, and indicates that the package can only be installed on
a platform with ‘.Platform$0S.type’ having that value.

The ‘Type’ field specifies the type of the package: see Section 1.10 [Package types],
page 80.

One can add subject classifications for the content of the package using the fields
‘Classification/ACM’ or ‘Classification/ACM-2012" (using the Computing Classifi-
cation System of the Association for Computing Machinery, https://www . acm. org/
publications/class-2012; the former refers to the 1998 version), ‘Classification/JEL’
(the Journal of Economic Literature Classification System, https://www . aeaweb . org/

" But it is checked for Open Source packages by R CMD check --as-cran.


https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=formatR
https://CRAN.R-project.org/package=formatR
https://www.acm.org/publications/class-2012
https://www.acm.org/publications/class-2012
https://www.aeaweb.org/econlit/jelCodes.php
https://www.aeaweb.org/econlit/jelCodes.php

Chapter 1: Creating R packages 9

econlit/jelCodes . php, or ‘Classification/MSC’ or ‘Classification/MSC-2010" (the
Mathematics Subject Classification of the American Mathematical Society, https: //
mathscinet . ams . org/msc/msc2010. html; the former refers to the 2000 version). The
subject classifications should be comma-separated lists of the respective classification
codes, e.g., ‘Classification/ACM: G.4, H.2.8, I.5.1".

A ‘Language’ field can be used to indicate if the package documentation is not in En-
glish: this should be a comma-separated list of standard (not private use or grandfathered)
IETF language tags as currently defined by RFC 5646 (https://tools.ietf.org/html/
rfc5646, see also https://en.wikipedia.org/wiki/IETF_language_tag), i.e., use lan-
guage subtags which in essence are 2-letter ISO 639-1 (https://en.wikipedia.org/
wiki/IS0_639-1) or 3-letter ISO 639-3 (https://en.wikipedia.org/wiki/IS0_639-3)
language codes.

An ‘RdMacros’ field can be used to hold a comma-separated list of packages from which
the current package will import Rd macro definitions. These package should also be listed in
‘Imports’ (or ‘Depends’). The macros in these packages will be imported after the system
macros, in the order listed in the ‘RdMacros’ field, before any macro definitions in the
current package are loaded. Macro definitions in individual .Rd4 files in the man directory
are loaded last, and are local to later parts of that file. In case of duplicates, the last
loaded definition will be used.® Both R CMD Rd2pdf and R CMD Rdconv have an optional flag
--RdMacros=pkglist. The option is also a comma-separated list of package names, and
has priority over the value given in DESCRIPTION. Packages using Rd macros should depend
on R 3.2.0 or later.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are added by
the package management tools.

There is no restriction on the use of other fields not mentioned here (but using other
capitalizations of these field names would cause confusion). Fields Note, Contact (for con-
tacting the authors/developers®) and MailingList are in common use. Some repositories
(including CRAN and R-forge) add their own fields.

1.1.2 Licensing

Licensing for a package which might be distributed is an important but potentially complex
subject.

It is very important that you include license information! Otherwise, it may not even be
legally correct for others to distribute copies of the package, let alone use it.

The package management tools use the concept of ‘free or open source software’ (FOSS,
e.g., https://en.wikipedia.org/wiki/FO0SS) licenses: the idea being that some users
of R and its packages want to restrict themselves to such software. Others need to ensure
that there are no restrictions stopping them using a package, e.g. forbidding commercial or
military use. It is a central tenet of FOSS software that there are no restrictions on users
nor usage.

Do not use the ‘License’ field for information on copyright holders: if needed, use a
‘Copyright’ field.

8 Duplicate definitions may trigger a warning: see Section 2.13 [User-defined macros], page 99.
9 bug.report will try to extract an email address from a Contact field if there is no BugReports field.


https://www.aeaweb.org/econlit/jelCodes.php
https://www.aeaweb.org/econlit/jelCodes.php
https://mathscinet.ams.org/msc/msc2010.html
https://mathscinet.ams.org/msc/msc2010.html
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-3
https://en.wikipedia.org/wiki/FOSS

Chapter 1: Creating R packages 10

The mandatory ‘License’ field in the DESCRIPTION file should specify the license of the
package in a standardized form. Alternatives are indicated wvia vertical bars. Individual
specifications must be one of

e One of the “standard” short specifications

GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-2.0
BSD_2_clause BSD_3_clause MIT

as made available via https://www.R-project.org/Licenses/ and contained in
subdirectory share/licenses of the R source or home directory.

e The names or abbreviations of other licenses contained in the license data base in file
share/licenses/license.db in the R source or home directory, possibly (for ver-
sioned licenses) followed by a version restriction of the form ‘(op v)’ with ‘op’ one
of the comparison operators ‘<’, ‘<=, >’ *>=" ‘==’ or ‘!=" and ‘v’ a numeric version
specification (strings of non-negative integers separated by ¢.’), possibly combined via
‘,” (see below for an example). For versioned licenses, one can also specify the name

followed by the version, or combine an existing abbreviation and the version with a ‘-’.

)

Abbreviations GPL and LGPL are ambiguous and usually!® taken to mean any version
of the license: but it is better not to use them.

e One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring to a file named LICENSE
or LICENCE in the package (source and installation) top-level directory.

e The string ‘Unlimited’, meaning that there are no restrictions on distribution or use
other than those imposed by relevant laws (including copyright laws).

If a package license restricts a base license (where permitted, e.g., using GPL-3 or AGPL-
3 with an attribution clause), the additional terms should be placed in file LICENSE (or
LICENCE), and the string ‘+ file LICENSE’ (or ‘+ file LICENCE’, respectively) should be
appended to the corresponding individual license specification. Note that several commonly
used licenses do not permit restrictions: this includes GPL-2 and hence any specification
which includes it.

Examples of standardized specifications include

License: GPL-2

License: LGPL (>= 2.0, < 3) | Mozilla Public License
License: GPL-2 | file LICENCE

License: GPL (>= 2) | BSD_3_clause + file LICENSE
License: Artistic-2.0 | AGPL-3 + file LICENSE

Please note in particular that “Public domain” is not a valid license, since it is not recognized
in some jurisdictions.

Please ensure that the license you choose also covers any dependencies (including system
dependencies) of your package: it is particularly important that any restrictions on the use
of such dependencies are evident to people reading your DESCRIPTION file.

Fields ‘License_is_F0SS’ and ‘License_restricts_use’ may be added by repositories
where information cannot be computed from the name of the license. ‘License_is_F0SS:
yes’ is used for licenses which are known to be FOSS, and ‘License_restricts_use’ can

10° CRAN expands them to e.g. GPL-2 | GPL-3.


https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 11

have values ‘yes’ or ‘no’ if the LICENSE file is known to restrict users or usage, or known
not to. These are used by, e.g., the available.packages filters.

The optional file LICENSE/LICENCE contains a copy of the license of the package. To
avoid any confusion only include such a file if it is referred to in the ‘License’ field of the
DESCRIPTION file.

Whereas you should feel free to include a license file in your source distribution, please
do not arrange to install yet another copy of the GNU COPYING or COPYING.LIB files but
refer to the copies on https://www.R-project.org/Licenses/ and included in the R
distribution (in directory share/licenses). Since files named LICENSE or LICENCE will be
installed, do not use these names for standard license files. To include comments about the
licensing rather than the body of a license, use a file named something like LICENSE.note.

A few “standard” licenses are rather license templates which need additional information
to be completed via ‘+ file LICENSE’.

1.1.3 Package Dependencies

The ‘Depends’ field gives a comma-separated list of package names which this package
depends on. Those packages will be attached before the current package when library
or require is called. Each package name may be optionally followed by a comment in
parentheses specifying a version requirement. The comment should contain a comparison
operator, whitespace and a valid version number, e.g. ‘MASS (>= 3.1-20)".

The ‘Depends’ field can also specify a dependence on a certain version of R — e.g., if the
package works only with R version 4.0.0 or later, include ‘R (>= 4.0)’ in the ‘Depends’ field.
(As here, trailing zeroes can be dropped and it is recommended that they are.) You can
also require a certain SVN revision for R-devel or R-patched, e.g. ‘R (>=2.14.0), R (>=
r56550)’ requires a version later than R-devel of late July 2011 (including released versions

of 2.14.0).

It makes no sense to declare a dependence on R without a version specification, nor on
the package base: this is an R package and package base is always available.

A package or ‘R’ can appear more than once in the ‘Depends’ field, for example to give
upper and lower bounds on acceptable versions.

It is inadvisable to use a dependence on R with patchlevel (the third digit) other than
zero. Doing so with packages which others depend on will cause the other packages to
become unusable under earlier versions in the series, and e.g. versions 4.x.1 are widely used
throughout the Northern Hemisphere academic year.

Both library and the R package checking facilities use this field: hence it is an error
to use improper syntax or misuse the ‘Depends’ field for comments on other software that
might be needed. The R INSTALL facilities check if the version of R used is recent enough
for the package being installed, and the list of packages which is specified will be attached
(after checking version requirements) before the current package.

The ‘Imports’ field lists packages whose namespaces are imported from (as specified in
the NAMESPACE file) but which do not need to be attached. Namespaces accessed by the ‘: :’
and ‘:::’ operators must be listed here, or in ‘Suggests’ or ‘Enhances’ (see below). Ideally
this field will include all the standard packages that are used, and it is important to include
S4-using packages (as their class definitions can change and the DESCRIPTION file is used to
decide which packages to re-install when this happens). Packages declared in the ‘Depends’


https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 12

field should not also be in the ‘Imports’ field. Version requirements can be specified and
are checked when the namespace is loaded.

The ‘Suggests’ field uses the same syntax as ‘Depends’ and lists packages that are
not necessarily needed. This includes packages used only in examples, tests or vignettes
(see Section 1.4 [Writing package vignettes|, page 45), and packages loaded in the body
of functions. E.g., suppose an example!'! from package foo uses a dataset from package
bar. Then it is not necessary to have bar use foo unless one wants to execute all the
examples/tests/vignettes: it is useful to have bar, but not necessary. Version requirements
can be specified but should be checked by the code which uses the package.

Finally, the ‘Enhances’ field lists packages “enhanced” by the package at hand, e.g., by
providing methods for classes from these packages, or ways to handle objects from these
packages (so several packages have ‘Enhances: chron’ because they can handle datetime
objects from chron (https://CRAN.R-project.org/package=chron) even though they
prefer R’s native datetime functions). Version requirements can be specified, but are cur-
rently not used. Such packages cannot be required to check the package: any tests which use
them must be conditional on the presence of the package. (If your tests use e.g. a dataset
from another package it should be in ‘Suggests’ and not ‘Enhances’.)

The general rules are
e A package should be listed in only one of these fields.

e Packages whose namespace only is needed to load the package using library(pkgname)
should be listed in the ‘Imports’ field and not in the ‘Depends’ field. Packages listed
in import or importFrom directives in the NAMESPACE file should almost always be in
‘Imports’ and not ‘Depends’.

e Packages that need to be attached to successfully load the package using
library(pkgname) must be listed in the ‘Depends’ field.

e All packages that are needed'? to successfully run R CMD check on the package must be
listed in one of ‘Depends’ or ‘Suggests’ or ‘Imports’. Packages used to run examples or
tests conditionally (e.g. via if (require (pkgname))) should be listed in ‘Suggests’ or
‘Enhances’. (This allows checkers to ensure that all the packages needed for a complete
check are installed.)

e Packages needed to use datasets from the package should be in ‘Imports’: this includes
those needed to define S4 classes used.

In particular, packages providing “only” data for examples or vignettes should be listed in
‘Suggests’ rather than ‘Depends’ in order to make lean installations possible.

Version dependencies in the ‘Depends’ and ‘Imports’ fields are used by library when
it loads the package, and install.packages checks versions for the ‘Depends’, ‘Imports’
and (for dependencies = TRUE) ‘Suggests’ fields.

1 even one wrapped in \donttest.

12 This includes all packages directly called by library and require calls, as well as data obtained via
data(theirdata, package = "somepkg") calls: R CMD check will warn about all of these. But there are
subtler uses which it may not detect: e.g. if package A uses package B and makes use of functionality in
package B which uses package C which package B suggests or enhances, then package C needs to be in the
‘Suggests’ list for package A. Nor will undeclared uses in included files be reported, nor unconditional
uses of packages listed under ‘Enhances’. R CMD check --as-cran will detect more of the subtler uses.


https://CRAN.R-project.org/package=chron

Chapter 1: Creating R packages 13

It is important that the information in these fields is complete and accurate: it is for
example used to compute which packages depend on an updated package and which packages
can safely be installed in parallel.

This scheme was developed before all packages had namespaces (R 2.14.0 in October
2011), and good practice changed once that was in place.

Field ‘Depends’ should nowadays be used rarely, only for packages which are intended to
be put on the search path to make their facilities available to the end user (and not to the
package itself): for example it makes sense that a user of package latticeExtra (https://
CRAN.R-project.org/package=latticeExtra) would want the functions of package lattice
(https://CRAN.R-project.org/package=lattice) made available.

Almost always packages mentioned in ‘Depends’ should also be imported from in the
NAMESPACE file: this ensures that any needed parts of those packages are available when
some other package imports the current package.

The ‘Imports’ field should not contain packages which are not imported from (via the
NAMESPACE file or :: or ::: operators), as all the packages listed in that field need to be
installed for the current package to be installed. (This is checked by R CMD check.)

R code in the package should call library or require only exceptionally. Such calls are
never needed for packages listed in ‘Depends’ as they will already be on the search path. It
used to be common practice to use require calls for packages listed in ‘Suggests’ in func-
tions which used their functionality, but nowadays it is better to access such functionality
via :: calls.

A package that wishes to make use of header files in other packages to compile its
C/C++ code needs to declare them as a comma-separated list in the field ‘LinkingTo’ in
the DESCRIPTION file. For example

LinkingTo: linkl, 1link2
The ‘LinkingTo’ field can have a version requirement which is checked at installation.

Specifying a package in ‘LinkingTo’ suffices if these are C/C++ headers containing source
code or static linking is done at installation: the packages do not need to be (and usually
should not be) listed in the ‘Depends’ or ‘Imports’ fields. This includes CRAN package
BH (https://CRAN.R-project.org/package=BH) and almost all users of RcppArmadillo
(https://CRAN.R-project . org/package=RcppArmadillo) and RcppEigen (https://
CRAN.R-project.org/package=RcppEigen). Note that ‘LinkingTo’ applies only to instal-
lation: if a packages wishes to use headers to compile code in tests or vignettes the package
providing them needs to be listed in ‘Suggests’ or perhaps ‘Depends’.

For another use of ‘LinkingTo’ see Section 5.4.3 [Linking to native routines in other
packages|, page 143.

The ‘Additional_repositories’ field is a comma-separated list of repository URLs
where the packages named in the other fields may be found. It is currently used by R CMD
check to check that the packages can be found, at least as source packages (which can be
installed on any platform).

1.1.3.1 Suggested packages

Note that someone wanting to run the examples/tests/vignettes may not have a suggested
package available (and it may not even be possible to install it for that platform). The


https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppEigen
https://CRAN.R-project.org/package=RcppEigen

Chapter 1: Creating R packages 14

recommendation used to be to make their use conditional via if (require("pkgname")):
this is OK if that conditioning is done in examples/tests/vignettes, although using
if (requireNamespace ("pkgname")) is preferred, if possible.

However, using require for conditioning in package code is not good practice as it alters
the search path for the rest of the session and relies on functions in that package not being
masked by other require or library calls. It is better practice to use code like

if (requireNamespace("rgl", quietly = TRUE)) {
rgl::plot3d(...)

} else {
## do something else not involving rgl.

}

Note the use of rgl: : as that object would not necessarily be visible (and if it is, it need not
be the one from that namespace: plot3d occurs in several other packages). If the intention
is to give an error if the suggested package is not available, simply use e.g. rgl: :plot3d.

If the conditional code produces print output, function withAutoprint can be useful.

Note that the recommendation to use suggested packages conditionally in tests does also
apply to packages used to manage test suites: a notorious example was testthat (https://
CRAN . R-project . org/package=testthat) which in version 1.0.0 contained illegal C++
code and hence could not be installed on standards-compliant platforms.

Some people have assumed that a ‘recommended’ package in ‘Suggests’ can safely be
used unconditionally, but this is not so. (R can be installed without recommended packages,
and which packages are ‘recommended’ may change.)

As noted above, packages in ‘Enhances’ must be used conditionally and hence objects
within them should always be accessed via : :.

On most systems, R CMD check can be run with only those packages declared in ‘Depends’
and ‘Imports’ by setting environment variable _R_CHECK_DEPENDS_ONLY_=true, whereas
setting _R_CHECK_SUGGESTS_ONLY_=true also allows suggested packages, but not those in
‘Enhances’ nor those not mentioned in the DESCRIPTION file. It is recommended that a
package is checked with each of these set, as well as with neither.

WARNING: Be extremely careful if you do things which would be run at installation
time depending on whether suggested packages are available or not—this includes top-level
code in R code files, .onLoad functions and the definitions of S4 classes and methods. The
problem is that once a namespace of a suggested package is loaded, references to it may
be captured in the installed package (most commonly in S4 methods), but the suggested
package may not be available when the installed package is used (which especially for binary
packages might be on a different machine). Even worse, the problems might not be confined
to your package, for the namespaces of your suggested packages will also be loaded whenever
any package which imports yours is installed and so may be captured there.

1.1.4 The INDEX file

The optional file INDEX contains a line for each sufficiently interesting object in the package,
giving its name and a description (functions such as print methods not usually called explic-
itly might not be included). Normally this file is missing and the corresponding informa-
tion is automatically generated from the documentation sources (using tools: :Rdindex())
when installing from source.


https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=testthat

Chapter 1: Creating R packages 15

The file is part of the information given by library(help = pkgname).

Rather than editing this file, it is preferable to put customized information about the
package into an overview help page (see Section 2.1.4 [Documenting packages|, page 90)
and/or a vignette (see Section 1.4 [Writing package vignettes], page 45).

1.1.5 Package subdirectories

The R subdirectory contains R code files, only. The code files to be installed must start
with an ASCII (lower or upper case) letter or digit and have one of the extensions'® .R, .S,
.q, .r, or .s. We recommend using .R, as this extension seems to be not used by any other
software. It should be possible to read in the files using source(), so R objects must be
created by assignments. Note that there need be no connection between the name of the
file and the R objects created by it. Ideally, the R code files should only directly assign
R objects and definitely should not call functions with side effects such as require and
options. If computations are required to create objects these can use code ‘earlier’ in the
package (see the ‘Collate’ field) plus functions in the ‘Depends’ packages provided that the
objects created do not depend on those packages except via namespace imports.

Extreme care is needed if top-level computations are made to depend on availability or
not of other packages. In particular this applies to setMethods and setClass calls.

Two exceptions are allowed: if the R subdirectory contains a file sysdata.rda (a
saved image of one or more R objects: please use suitable compression as suggested by
tools::resaveRdaFiles, and see also the ‘SysDataCompression’ DESCRIPTION field.)
this will be lazy-loaded into the namespace environment — this is intended for system

3 : 9

datasets that are not intended to be user-accessible via data. Also, files ending in ‘.in
will be allowed in the R directory to allow a configure script to generate suitable files.

Only ASCII characters (and the control characters tab, formfeed, LF and CR) should be
used in code files. Other characters are accepted in comments', but then the comments
may not be readable in e.g. a UTF-8 locale. Non-ASCII characters in object names will
normally!® fail when the package is installed. Any byte will be allowed in a quoted character
string but ‘\uxxxx’ escapes should be used for non-ASCII characters. However, non-ASCII
character strings may not be usable in some locales and may display incorrectly in others.

Various R functions in a package can be used to initialize and clean up. See Section 1.5.3
[Load hooks], page 51.

The man subdirectory should contain (only) documentation files for the objects in the
package in R documentation (Rd) format. The documentation filenames must start with
an ASCII (lower or upper case) letter or digit and have the extension .Rd (the default) or
.rd. Further, the names must be valid in ‘file://’ URLs, which means'® they must be
entirely ASCII and not contain ‘%’. See Chapter 2 [Writing R documentation files|, page 82,
for more information. Note that all user-level objects in a package should be documented;

13 Extensions .S and .s arise from code originally written for S(-PLUS), but are commonly used for

assembler code. Extension .q was used for S, which at one time was tentatively called QPE.

but they should be in the encoding declared in the DESCRIPTION file.

This is true for OSes which implement the ‘C’ locale: Windows’ idea of the ‘C’ locale uses the WinAnsi
charset.

14
15

16 More precisely, they can contain the English alphanumeric characters and the symbols ‘¢ - _ . + 1 ? (

), =&



Chapter 1: Creating R packages 16

if a package pkg contains user-level objects which are for “internal” use only, it should
provide a file pkg-internal.Rd which documents all such objects, and clearly states that
these are not meant to be called by the user. See e.g. the sources for package grid in
the R distribution. Note that packages which use internal objects extensively should not
export those objects from their namespace, when they do not need to be documented (see
Section 1.5 [Package namespaces|, page 49).

Having a man directory containing no documentation files may give an installation error.

The man subdirectory may contain a subdirectory named macros; this will contain source
for user-defined Rd macros. (See Section 2.13 [User-defined macros], page 99.) These use the
Rd format, but may not contain anything but macro definitions, comments and whitespace.

The R and man subdirectories may contain OS-specific subdirectories named unix or
windows.

The sources and headers for the compiled code are in src, plus optionally a file Makevars
or Makefile. When a package is installed using R CMD INSTALL, make is used to control
compilation and linking into a shared object for loading into R. There are default make
variables and rules for this (determined when R is configured and recorded in R_HOME/etcR_
ARCH/Makeconf), providing support for C, C++, fixed- or free-form Fortran, Objective C
and Objective C++!7 with associated extensions .c, .cc or .cpp, .f, .£90 or .£95, .m, and
.mm, respectively. We recommend using .h for headers, also for C++® or Fortran 9x include
files. (Use of extension .C for C++ is no longer supported.) Files in the src directory should
not be hidden (start with a dot), and hidden files will under some versions of R be ignored.

It is not portable (and may not be possible at all) to mix all these languages in a single
package. Because R itself uses it, we know that C and fixed-form Fortran can be used
together, and mixing C, C++ and Fortran usually work for the platform’s native compilers.

If your code needs to depend on the platform there are certain defines which can used
in C or C++. On all Windows builds (even 64-bit ones) ‘_WIN32’ will be defined: on 64-bit
Windows builds also ‘_WIN64’. On macOS ‘__APPLE__’ is defined!?; for an ‘Apple Silicon’
platform, test for both ‘__APPLE__’ and ‘__arm64__’.

The default rules can be tweaked by setting macros® in a file src/Makevars (see
Section 1.2.1 [Using Makevars|, page 26). Note that this mechanism should be general
enough to eliminate the need for a package-specific src/Makefile. If such a file is to be
distributed, considerable care is needed to make it general enough to work on all R plat-
forms. If it has any targets at all, it should have an appropriate first target named ‘all’ and
a (possibly empty) target ‘clean’ which removes all files generated by running make (to be
used by ‘R CMD INSTALL --clean’ and ‘R CMD INSTALL --preclean’). There are platform-
specific file names on Windows: src/Makevars.win takes precedence over src/Makevars
and src/Makefile.win must be used. Some make programs require makefiles to have a
complete final line, including a newline.

17
18
19

either or both of which may not be supported on particular platforms

Using .hpp is not guaranteed to be portable.

There is also ‘__APPLE_CC__’, but that indicates a compiler with Apple-specific features not the OS,
although for historical reasons is is defined by LLVM clang. It is used in Rinlinedfuns.h.

20 the POSIX terminology, called ‘make variables’ by GNU make.



Chapter 1: Creating R packages 17

A few packages use the src directory for purposes other than making a shared
object (e.g. to create executables). Such packages should have files src/Makefile and
src/Makefile.win (unless intended for only Unix-alikes or only Windows).

In very special cases packages may create binary files other than the shared objects/DLLs
in the src directory. Such files will not be installed in a multi-architecture setting since R
CMD INSTALL --libs-only is used to merge multiple sub-architectures and it only copies
shared objects/DLLs. If a package wants to install other binaries (for example executable
programs), it should provide an R script src/install.libs.R which will be run as part of
the installation in the src build directory instead of copying the shared objects/DLLs. The
script is run in a separate R environment containing the following variables: R_PACKAGE_
NAME (the name of the package), R_PACKAGE_SOURCE (the path to the source directory of
the package), R_PACKAGE_DIR (the path of the target installation directory of the package),
R_ARCH (the arch-dependent part of the path, often empty), SHLIB_EXT (the extension of
shared objects) and WINDOWS (TRUE on Windows, FALSE elsewhere). Something close to the
default behavior could be replicated with the following src/install.libs.R file:

files <- Sys.glob(pasteO("*", SHLIB_EXT))
dest <- file.path(R_PACKAGE_DIR, pasteO(’libs’, R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(files, dest, overwrite = TRUE)
if(file.exists("symbols.rds"))

file.copy("symbols.rds", dest, overwrite = TRUE)

On the other hand, executable programs could be installed along the lines of

execs <- c("one", "two", "three")

if (WINDOWS) execs <- pasteO(execs, ".exe")

if ( any(file.exists(execs)) ) {
dest <- file.path(R_PACKAGE_DIR, pasteO(’bin’, R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(execs, dest, overwrite = TRUE)

}
Note the use of architecture-specific subdirectories of bin where needed.
The data subdirectory is for data files: See Section 1.1.6 [Data in packages], page 19.

The demo subdirectory is for R scripts (for running via demo () ) that demonstrate some
of the functionality of the package. Demos may be interactive and are not checked automat-
ically, so if testing is desired use code in the tests directory to achieve this. The script files
must start with a (lower or upper case) letter and have one of the extensions .R or .r. If
present, the demo subdirectory should also have a 00Index file with one line for each demo,
giving its name and a description separated by a tab or at least three spaces. (This index
file is not generated automatically.) Note that a demo does not have a specified encoding
and so should be an ASCII file (see Section 1.6.3 [Encoding issues], page 68). Function
demo () will use the package encoding if there is one, but this is mainly useful for non-ASCII
comments.

The contents of the inst subdirectory will be copied recursively to the installation
directory. Subdirectories of inst should not interfere with those used by R (currently, R,
data, demo, exec, 1ibs, man, help, html and Meta, and earlier versions used latex, R-ex).
The copying of the inst happens after src is built so its Makefile can create files to be



Chapter 1: Creating R packages 18

installed. To exclude files from being installed, one can specify a list of exclude patterns
in file .Rinstignore in the top-level source directory. These patterns should be Perl-like
regular expressions (see the help for regexp in R for the precise details), one per line, to
be matched case-insensitively against the file and directory paths, e.g. doc/.*[.]png$ will
exclude all PNG files in inst/doc based on the extension.

Note that with the exceptions of INDEX, LICENSE/LICENCE and NEWS, information files
at the top level of the package will not be installed and so not be known to users of
Windows and macOS compiled packages (and not seen by those who use R CMD INSTALL
or install.packages() on the tarball). So any information files you wish an end user to
see should be included in inst. Note that if the named exceptions also occur in inst, the
version in inst will be that seen in the installed package.

Things you might like to add to inst are a CITATION file for use by the citation
function, and a NEWS.RA file for use by the news function. See its help page for the specific
format restrictions of the NEWS.Rd file.

Another file sometimes needed in inst is AUTHORS or COPYRIGHTS to specify the authors
or copyright holders when this is too complex to put in the DESCRIPTION file.

Subdirectory tests is for additional package-specific test code, similar to the specific
tests that come with the R distribution. Test code can either be provided directly in a
.R (or .r as from R 3.4.0) file, or via a .Rin file containing code which in turn creates
the corresponding .R file (e.g., by collecting all function objects in the package and then
calling them with the strangest arguments). The results of running a .R file are written
to a .Rout file. If there is a corresponding®' .Rout.save file, these two are compared,
with differences being reported but not causing an error. The directory tests is copied
to the check area, and the tests are run with the copy as the working directory and with
R_LIBS set to ensure that the copy of the package installed during testing will be found
by library(pkg_name). Note that the package-specific tests are run in a vanilla R session
without setting the random-number seed, so tests which use random numbers will need to
set the seed to obtain reproducible results (and it can be helpful to do so in all cases, to
avoid occasional failures when tests are run).

If directory tests has a subdirectory Examples containing a file pkg-Ex.Rout.save,
this is compared to the output file for running the examples when the latter are checked.
Reference output should be produced without having the --timings option set (and note
that -—as-cran sets it).

If reference output is included for examples, tests or vignettes do make sure that it is fully
reproducible, as it will be compared verbatim to that produced in a check run, unless the
‘IGNORE_RDIFF’ markup is used. Things which trip up maintainers include displayed version
numbers from loading other packages, printing numerical results to an unreproducibly high
precision and printing timings. Another trap is small values which are in fact rounding
error from zero: consider using zapsmall.

Subdirectory exec could contain additional executable scripts the package needs, typi-
cally scripts for interpreters such as the shell, Perl, or Tcl. NB: only files (and not directo-
ries) under exec are installed (and those with names starting with a dot are ignored), and

2L The best way to generate such a file is to copy the .Rout from a successful run of R CMD check. If you want
to generate it separately, do run R with options --vanilla --no-echo and with environment variable
LANGUAGE=en set to get messages in English. Be careful not to use output with the option --timings
(and note that --as-cran sets it).



Chapter 1: Creating R packages 19

they are all marked as executable (mode 755, moderated by ‘umask’) on POSIX platforms.
Note too that this is not suitable for executable programs since some platforms (including
Windows) support multiple architectures using the same installed package directory.

Subdirectory po is used for files related to localization: see Section 1.8 [Internationaliza-
tion], page 77.

Subdirectory tools is the preferred place for auxiliary files needed during configuration,
and also for sources need to re-create scripts (e.g. M4 files for autoconf).

1.1.6 Data in packages

The data subdirectory is for data files, either to be made available via lazy-loading or for
loading using data(). (The choice is made by the ‘LazyData’ field in the DESCRIPTION file:
the default is not to do so.) It should not be used for other data files needed by the package,
and the convention has grown up to use directory inst/extdata for such files.

Data files can have one of three types as indicated by their extension: plain R code
(.Ror .r), tables (.tab, .txt, or .csv, see ?data for the file formats, and note that .csv
is not the standard* CSV format), or save() images (.RData or .rda). The files should
not be hidden (have names starting with a dot). Note that R code should be if possible
“self-sufficient” and not make use of extra functionality provided by the package, so that
the data file can also be used without having to load the package or its namespace: it should
run as silently as possible and not change the search() path by attaching packages or other
environments.

Images (extensions .RData®? or .rda) can contain references to the namespaces of pack-
ages that were used to create them. Preferably there should be no such references in data
files, and in any case they should only be to packages listed in the Depends and Imports
fields, as otherwise it may be impossible to install the package. To check for such references,
load all the images into a vanilla R session, run str() on all the datasets, and look at the
output of loadedNamespaces ().

Particular care is needed where a dataset or one of its components is of an S4 class,
especially if the class is defined in a different package. First, the package containing the
class definition has to be available to do useful things with the dataset, so that package
must be listed in Imports or Depends (even if this gives a check warning about unused
imports). Second, the definition of an S4 class can change, and often is unnoticed when in
a package with a different author. So it may be wiser to use the .R form and use that to
create the dataset object when needed (loading package namespaces but not attaching them
by using requireNamespace (pkg, quietly = TRUE) and using pkg:: to refer to objects in
the namespace).

If you are not using ‘LazyData’ and either your data files are large or e.g., you use
data/foo.R scripts to produce your data, loading your namespace, you can speed up in-
stallation by providing a file datalist in the data subdirectory. This should have one
line per topic that data() will find, in the format ‘foo’ if data(foo) provides ‘foo’, or
‘foo: bar bah’ if data(foo) provides ‘bar’ and ‘bah’. R CMD build will automatically add
a datalist file to data directories of over 1Mb, using the function tools: :add_datalist.

22 e.g. https://tools.ietf.org/html/rfc4180.

23 People who have trouble with case are advised to use .rda as a common error is to refer to abc.RData
as abc.Rdatal


https://tools.ietf.org/html/rfc4180

Chapter 1: Creating R packages 20

Tables (.tab, .txt, or .csv files) can be compressed by gzip, bzip2 or xz, optionally
with additional extension .gz, .bz2 or .xz.

If your package is to be distributed, do consider the resource implications of large datasets
for your users: they can make packages very slow to download and use up unwelcome
amounts of storage space, as well as taking many seconds to load. It is normally best
to distribute large datasets as .rda images prepared by save(, compress = TRUE) (the
default). Using bzip2 or xz compression will usually reduce the size of both the package
tarball and the installed package, in some cases by a factor of two or more.

Package tools has a couple of functions to help with data images: checkRdaFiles reports
on the way the image was saved, and resaveRdaFiles will re-save with a different type of
compression, including choosing the best type for that particular image.

Many packages using ‘LazyData’ will benefit from using a form of compression other
than gzip in the installed lazy-loading database. This can be selected by the --data-
compress option to R CMD INSTALL or by using the ‘LazyDataCompression’ field in the
DESCRIPTION file. Useful values are bzip2, xz and the default, gzip: value none is also
accepted. The only way to discover which is best is to try them all and look at the size of
the pkgname/data/Rdata.rdb file. A function to do that (quoting sizes in KB) is

CheckLazyDataCompression <- function(pkg)
{
pkg_name <- sub("_.*", ""  pkg)
1lib <- tempfile(); dir.create(lib)
zs <- c("gzip", "bzip2", "xz")
res <- integer(3); names(res) <- zs
for (z in zs) {
opts <- c(pasteO("--data-compress=", z),

"--no-libs", "--no-help", "--no-demo", "--no-exec", "--no-test-load"
install.packages(pkg, lib, INSTALL_opts = opts, repos = NULL, quiet = TRUE)
res[z] <- file.size(file.path(lib, pkg_name, "data", "Rdata.rdb"))

}
ceiling(res/1024)
}

(applied to a source package without any ‘LazyDataCompression’ field). R CMD check
will warn if it finds a pkgname/data/Rdata.rdb file of more than 5MB without
‘LazyDataCompression’ being set. If you see that, run CheckLazyDataCompression()
and set the field — to gzip in the unlikely event?* that is the best choice.

The analogue for sysdata.rda is field ‘SysDataCompression’: the default is xz for files
bigger than 1MB otherwise gzip.

Lazy-loading is not supported for very large datasets (those which when serialized exceed
2GB, the limit for the format on 32-bit platforms).

1.1.7 Non-R scripts in packages

Code which needs to be compiled (C, C++, Fortran . . .) is included in the src subdirectory
and discussed elsewhere in this document.

24 For all the CRAN packages tested, either gz or bzip2 provided a very substantial reduction in installed
size.



Chapter 1: Creating R packages 21

Subdirectory exec could be used for scripts for interpreters such as the
shell, BUGS, JavaScript, Matlab, Perl, php (amap (https: // CRAN . R-project .
org / package=amap)), Python or Tecl (Simile (https: / / CRAN . R-project . org /
package=Simile)), or even R. However, it seems more common to use the inst
directory, for example WriteXLS/inst/Perl, NMF/inst/m-files, RnavGraph/inst/tcl,
RProtoBuf/inst/python and emdbook/inst/BUGS and gridSVG/inst/js.

Java code is a special case: except for very small programs, .java files should be byte-
compiled (to a .class file) and distributed as part of a . jar file: the conventional location
for the . jar file(s) is inst/java. It is desirable (and required under an Open Source license)
to make the Java source files available: this is best done in a top-level java directory in the
package—the source files should not be installed.

If your package requires one of these interpreters or an extension then this should be
declared in the ‘SystemRequirements’ field of its DESCRIPTION file. (Users of Java most
often do so via rJava (https://CRAN.R-project.org/package=rJava), when depending
on/importing that suffices unless there is a version requirement on Java code in the package.)

Windows and Mac users should be aware that the T'cl extensions ‘BWidget’ and ‘Tktable’
(which have sometimes been included in the Windows?® and macOS R installers) are exten-
sions and do need to be declared (and that ‘Tktable’ is less widely available than it used to
be, including not in the main repositories for major Linux distributions). ‘BWidget’ needs
to be installed by the user on other OSes. This is fairly easy to do: first find the Tcl search
path:

library(tcltk)
strsplit(tclvalue(’auto_path’), " ") [[1]]

then download the sources from https://sourceforge.net/projects/tcllib/files/
BWidget/ and in a terminal run something like

tar xf bwidget-1.9.14.tar.gz
sudo mv bwidget-1.9.14 /usr/local/lib

substituting a location on the Tcl search path for /usr/local/1ib if needed. (If no location
on that search path is writeable, you will need to add one each time BWidget is to be used
with tcltk::addTclPath().)

To (silently) test for the presence of ‘Tktable’ one can use

library(tcltk)
have_tktable <- !isFALSE(suppressWarnings(tclRequire(’Tktable’)))

Installing ‘Tktable’ needs a C compiler and the Tk headers (not necessarily installed with
Tcl/Tk). At the time of writing the latest sources (from 2008) were available from https://
sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz, but
needed patching for current Tk (8.6.11, but not 8.6.10) — a patch can be found at https://
www.stats.ox.ac.uk/pub/bdr/Tktable/. For a system installation of Tk you may need
to install Tktable as ‘root’ as on e.g. Fedora all the locations on auto_path are owned by
‘root’.

2 ‘BWidget’ still is on Windows but ‘Tktable’ was not in R 4.0.0.


https://CRAN.R-project.org/package=amap
https://CRAN.R-project.org/package=amap
https://CRAN.R-project.org/package=Simile
https://CRAN.R-project.org/package=Simile
https://CRAN.R-project.org/package=rJava
https://sourceforge.net/projects/tcllib/files/BWidget/
https://sourceforge.net/projects/tcllib/files/BWidget/
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz
https://www.stats.ox.ac.uk/pub/bdr/Tktable/
https://www.stats.ox.ac.uk/pub/bdr/Tktable/

Chapter 1: Creating R packages 22

1.1.8 Specifying URLs

URLSs in many places in the package documentation will be converted to clickable hyperlinks
in at least some of their renderings. So care is needed that their forms are correct and
portable.

The full URL should be given, including the scheme (often ‘http://’ or ‘https://’) and
a final ‘/’ for references to directories.

Spaces in URLs are not portable and how they are handled does vary by HTTP server
and by client. There should be no space in the host part of an ‘http://’ URL, and spaces
in the remainder should be encoded, with each space replaced by ‘%20’.

Other characters may benefit from being encoded: see the help on URLencode ().
The canonical URL for a CRAN package is
https://cran.r-project.org/package=pkgname

and not a version starting ‘https://cran.r-project.org/web/packages/pkgname’.

1.2 Configure and cleanup

Note that most of this section is specific to Unix-alikes: see the comments later on about
the Windows port of R.

If your package needs some system-dependent configuration before installation you can
include an executable (Bourne?® shell script configure in your package which (if present)
is executed by R CMD INSTALL before any other action is performed. This can be a script
created by the Autoconf mechanism, but may also be a script written by yourself. Use
this to detect if any nonstandard libraries are present such that corresponding code in the
package can be disabled at install time rather than giving error messages when the package
is compiled or used. To summarize, the full power of Autoconf is available for your extension
package (including variable substitution, searching for libraries, etc.).

A configure script is run in an environment which has all the environment variables
set for an R session (see R_HOME/etc/Renviron) plus R_PACKAGE_NAME (the name of the
package), R_PACKAGE_DIR (the path of the target installation directory of the package, a
temporary location for staged installs) and R_ARCH (the arch-dependent part of the path,
often empty).

Under a Unix-alike only, an executable (Bourne shell) script cleanup is executed as
the last thing by R CMD INSTALL if option --clean was given, and by R CMD build when
preparing the package for building from its source.

26 The script should only assume a POSIX-compliant /bin/sh — see https://pubs . opengroup . org/
onlinepubs/9699919799/utilities/V3_chap02.html. In particular bash extensions must not be used,
and not all R platforms have a bash command, let alone one at /bin/bash. All known shells used with
R support the use of backticks, but not all support ‘$(cmd)’. However, real-world shells are not fully
POSIX-compliant and omissions and idiosyncrasies need to be worked around—which Autoconf will do
for you. Arithmetic expansion is a known issue: see https://www.gnu.org/software/autoconf/manual/
autoconf . html#Portable-Shell for this and others. Some checks can be done by the checkbashisms
Perl script at https://sourceforge.net/projects/checkbaskisms/files, also available in most Linux
distributions in a package named either ‘devscripts’ or ‘devscripts-checkbashisms’: a possibly later
version can be extracted from Debian sources such as the most recent tar.xz in https://deb.debian.
org/debian/pool/main/d/devscripts/.


https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
https://sourceforge.net/projects/checkbaskisms/files
https://deb.debian.org/debian/pool/main/d/devscripts/
https://deb.debian.org/debian/pool/main/d/devscripts/

Chapter 1: Creating R packages 23

As an example consider we want to use functionality provided by a (C or Fortran)
library foo. Using Autoconf, we can create a configure script which checks for the library,
sets variable HAVE_F0O to TRUE if it was found and to FALSE otherwise, and then substitutes
this value into output files (by replacing instances of ‘@HAVE_F00@’ in input files with the
value of HAVE_F00). For example, if a function named bar is to be made available by linking
against library foo (i.e., using -1fo00), one could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO0=FALSE])
AC_SUBST (HAVE_F00)

AC_CONFIG_FILES([foo.R])

AC_OUTPUT

in configure.ac (assuming Autoconf 2.50 or later).
The definition of the respective R function in foo.R.in could be

foo <- function(x) {
if ('@HAVE_F00@)
stop("Sorry, library ’foo’ is not available")

From this file configure creates the actual R source file foo.R looking like

foo <- function(x) {
if ('FALSE)
stop("Sorry, library ’foo’ is not available")

if library foo was not found (with the desired functionality). In this case, the above R code
effectively disables the function.

One could also use different file fragments for available and missing functionality, respec-
tively.

You will very likely need to ensure that the same C compiler and compiler flags are used
in the configure tests as when compiling R or your package. Under a Unix-alike, you
can achieve this by including the following fragment early in configure.ac (before calling
AC_PROG_CC or anything which calls it)

: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC*
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®

(Using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary in order to use the correct version
of R when running the script as part of R CMD INSTALL, and the quotes since ‘${R_HOME}’
might contain spaces.)

If your code does load checks (for example, to check for an entry point in a library or to
run code) then you will also need

LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS‘



Chapter 1: Creating R packages 24

Packages written with C++ need to pick up the details for the C++ compiler and switch
the current language to C++ by something like

CXX=‘"${R_HOME}/bin/R" CMD config CXX‘
if test -z "$CXX"; then

AC_MSG_ERROR([No C++ compiler is available])
fi
CXXFLAGS=‘"${R_HOME}/bin/R" CMD config CXXFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®
AC_LANG(C++)

The latter is important, as for example C headers may not be available to C++ programs or
may not be written to avoid C++ name-mangling. Note that an R installation is not required
to have a C++ compiler so ‘CXX’ may be empty. If the package specifies a non-default C++
standard, use the config variable names (such as CXX17) appropriate to the standard, but
still set CXX and CXXFLAGS.

You can use R CMD config to get the value of the basic configuration variables, and also
the header and library flags necessary for linking a front-end executable program against
R, see R CMD config --help for details. If you do, it is essential that you use both the
command and the appropriate flags, so that for example ‘CC’ must always be used with
‘CFLAGS’ and (for code to be linked into a shared library) ‘CPICFLAGS’. For Fortran, be
careful to use ‘FC FFLAGS FPICFLAGS’ for fixed-form Fortran and ‘FC FCFLAGS FPICFLAGS’
for free-form Fortran.

To check for an external BLAS library using the AX_BLAS macro from the official Auto-
conf Macro Archive?”, one can use

FC=‘"${R_HOME}/bin/R" CMD config FC‘

FCLAGS=‘"${R_HOME}/bin/R" CMD config FFLAGS®

AC_PROG_FC

FLIBS=‘"${R_HOME}/bin/R" CMD config FLIBS®

AX_BLAS([], AC_MSG_ERROR([could not find your BLAS library], 1))

Note that FLIBS as determined by R must be used to ensure that Fortran code works
on all R platforms.

N.B.: If the configure script creates files, e.g. src/Makevars, you do need a cleanup
script to remove them. Otherwise R CMD build may ship the files that are created. For
example, package RODBC (https://CRAN.R-project.org/package=R0ODBC) has

#!/bin/sh

rm -f config.* src/Makevars src/config.h
As this example shows, configure often creates working files such as config.log.

If your configure script needs auxiliary files, it is recommended that you ship them in a
tools directory (as R itself does).

You should bear in mind that the configure script will not be used on Windows systems.
If your package is to be made publicly available, please give enough information for a
user on a non-Unix-alike platform to configure it manually, or provide a configure.win

2T nttps://www.gnu.org/software/autoconf-archive/ax_blas.html. If you include macros from that
archive you need to arrange for them to be included in the package sources for use by autoreconf.


https://CRAN.R-project.org/package=RODBC
https://www.gnu.org/software/autoconf-archive/ax_blas.html

Chapter 1: Creating R packages 25

script to be used on that platform. (Optionally, there can be a cleanup.win script. Both
should be shell scripts to be executed by ash, which is a minimal version of Bourne-style
sh.) When configure.win is run the environment variables R_HOME (which uses ‘/’ as
the file separator), R_ARCH and R_ARCH_BIN will be set. Use R_ARCH to decide if this is
a 64-bit build (its value there is ‘/x64’) and to install DLLs to the correct place (${R_
HOME}/1ibs${R_ARCH}). Use R_ARCH_BIN to find the correct place under the bin directory,
e.g. ${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe.

In some rare circumstances, the configuration and cleanup scripts need to know the
location into which the package is being installed. An example of this is a package that
uses C code and creates two shared object/DLLs. Usually, the object that is dynamically
loaded by R is linked against the second, dependent, object. On some systems, we can
add the location of this dependent object to the object that is dynamically loaded by R.
This means that each user does not have to set the value of the LD_LIBRARY_PATH (or
equivalent) environment variable, but that the secondary object is automatically resolved.
Another example is when a package installs support files that are required at run time, and
their location is substituted into an R data structure at installation time. The names of the
top-level library directory (i.e., specifiable via the ‘-1’ argument) and the directory of the
package itself are made available to the installation scripts via the two shell/environment
variables R_LIBRARY_DIR and R_PACKAGE_DIR. Additionally, the name of the package (e.g.
‘survival’ or ‘MASS’) being installed is available from the environment variable R_PACKAGE _
NAME. (Currently the value of R_PACKAGE_DIR is always ${R_LIBRARY_DIR}/${R_PACKAGE_
NAME}, but this used not to be the case when versioned installs were allowed. Its main use
is in configure.win scripts for the installation path of external software’s DLLs.) Note
that the value of R_PACKAGE_DIR may contain spaces and other shell-unfriendly characters,
and so should be quoted in makefiles and configure scripts.

One of the more tricky tasks can be to find the headers and libraries of external software.
One tool which is increasingly available on Unix-alikes (but not by default*® on macOS)
to do this is pkg-config. The configure script will need to test for the presence of
the command itself?® (see for example package Cairo (https://CRAN.R-project.org/
package=Cairo)), and if present it can be asked if the software is installed, of a suitable
version and for compilation/linking flags by e.g.

$ pkg-config --exists ’QtCore >= 4.0.0° # check the status

$ pkg-config --modversion QtCore

4.8.7

$ pkg-config --cflags QtCore

-DQT_SHARED -I/usr/include/QtCore

$ pkg-config --libs QtCore

-1QtCore

$ pkg-config --static --libs QtCore

-1QtCore -lpthread -1z -1m -1dl -lgthread-2.0 -pthread -1glib-2.0 -1rt

28 but it is available on the machines used to produce the CRAN binary packages: however as Apple does
not ship .pc files for its system libraries such as ‘zlib’, it may well not find information on these.

29 Tt is not wise to check the version of pkg-config as it is sometimes a link to pkgconf, a separate project
with a different version series.


https://CRAN.R-project.org/package=Cairo
https://CRAN.R-project.org/package=Cairo

Chapter 1: Creating R packages 26

Note that pkg-config --1ibs gives the information required to link against the default
version®® of that library (usually the dynamic one), and pkg-config --static --libs may
be needed if the static library is to be used.

Static libraries are commonly used on macOS (and Windows) to facilitate bundling
external software with binary distributions of packages. This means that portable (source)
packages need to allow for this. It is not safe to just use pkg-config --static --libs,
as that will often include further libraries that are not necessarily installed on the user’s
system (or maybe only the versioned library such as 1ibjbig.so.2.1 is installed and not
1libjbig.so which would be needed to use -1jbig often included in pkg-config —-static
--1libs libtiff-4).

Sometimes the name by which the software is known to pkg-config is not what one
might expect (e.g. ‘gtk+-2.0" even for 2.22). To get a complete list use

pkg-config --list-all | sort

If using Autoconf it is good practice to include all the Autoconf sources in the the package
(and required for an Open Source package and tested by R CMD check --as-cran). This
will include the file configure.ac?®! in the top-level directory of the package. If extensions
written in m4 are needed, these should be included under the directory tools and included
in configure.ac viag e.g.,

m4_include([tools/ax_pthread.m4])

One source of such extensions is the ‘Autoconf Archive’ (https://www.gnu.org/software/
autoconf-archive/. It is not safe to assume this is installed on users’ machines, so the
extension should be shipped with the package (taking care to comply with its licence).

1.2.1 Using Makevars

Sometimes writing your own configure script can be avoided by supplying a file Makevars:
also one of the most common uses of a configure script is to make Makevars from
Makevars.in.

A Makevars file is a makefile and is used as one of several makefiles by R CMD SHLIB (which
is called by R CMD INSTALL to compile code in the src directory). It should be written if at
all possible in a portable style, in particular (except for Makevars.win) without the use of
GNU extensions.

The most common use of a Makevars file is to set additional preprocessor options (for
example include paths and definitions) for C/C++ files via PKG_CPPFLAGS, and additional
compiler flags by setting PKG_CFLAGS, PKG_CXXFLAGS or PKG_FFLAGS, for C, C++ or Fortran
respectively (see Section 5.5 [Creating shared objects|, page 144).

N.B.: Include paths are preprocessor options, not compiler options, and must be set in
PKG_CPPFLAGS as otherwise platform-specific paths (e.g. ‘-I/usr/local/include’) will take
precedence. PKG_CPPFLAGS should contain ‘-I’, ‘-D’, ‘-U” and (where supported) ‘~include’
and ‘-pthread’ options: everything else should be a compiler flag. The order of flags
matters, and using ‘-1’ in PKG_CFLAGS or PKG_CXXFLAGS has led to hard-to-debug platform-
specific errors.

39 but not all projects get this right when only a static library is installed, so it is often necessary to try in
turn pkg-config --1ibs and pkg-config --static --1ibs.
31 a decade ago Autoconf used configure.in: this is still accepted but should be renamed and autoreconf

as used by R CMD check --as-cran will report as such.


https://www.gnu.org/software/autoconf-archive/
https://www.gnu.org/software/autoconf-archive/

Chapter 1: Creating R packages 27

Makevars can also be used to set flags for the linker, for example ‘-L’ and ‘-1’ options,
via PKG_LIBS.

When writing a Makevars file for a package you intend to distribute, take care to ensure
that it is not specific to your compiler: flags such as -02 -Wall -pedantic (and all other
-W flags: for the Oracle compilers these are used to pass arguments to compiler phases) are
all specific to GCC.

Also, do not set variables such as CPPFLAGS, CFLAGS etc.: these should be settable by
users (sites) through appropriate personal (site-wide) Makevars files. See Section “Cus-
tomizing package compilation” in R Installation and Administration,

There are some macros®? which are set whilst configuring the building of R itself and
are stored in R_HOME/etcR_ARCH/Makeconf. That makefile is included as a Makefile after
Makevars[.win], and the macros it defines can be used in macro assignments and make
command lines in the latter. These include

FLIBS A macro containing the set of libraries need to link Fortran code. This may
need to be included in PKG_LIBS: it will normally be included automatically if
the package contains Fortran source files in the src directory.

BLAS_LIBS
A macro containing the BLAS libraries used when building R. This may need
to be included in PKG_LIBS. Beware that if it is empty then the R executable
will contain all the double-precision and double-complex BLAS routines, but
no single-precision nor complex routines. If BLAS_LIBS is included, then FLIBS
also needs to be®® included following it, as most BLAS libraries are written at
least partially in Fortran.

LAPACK_LIBS
A macro containing the LAPACK libraries (and paths where appropriate) used
when building R. This may need to be included in PXKG_LIBS. It may point
to a dynamic library 1ibRlapack which contains the main double-precision
LAPACK routines as well as those double-complex LAPACK routines needed
to build R, or it may point to an external LAPACK library, or may be empty
if an external BLAS library also contains LAPACK.

[libRlapack includes all the double-precision LAPACK routines which
were current in 2003: a list of which routines are included is in file
src/modules/lapack/README. Note that an external LAPACK/BLAS library
need not do so, as some were ‘deprecated’ (and not compiled by default) in
LAPACK 3.6.0 in late 2015.]

For portability, the macros BLAS_LIBS and FLIBS should always be included
after LAPACK_LIBS (and in that order).

SAFE_FFLAGS
A macro containing flags which are needed to circumvent over-optimization of
FORTRAN code: it is might be ‘-g -02 -ffloat-store’ or ‘-g -02 -msse2

32 in POSIX parlance: GNU make calls these ‘make variables’.

33 at least on Unix-alikes: the Windows build currently resolves such dependencies to a static Fortran

library when Rblas.d1l is built. Also, not if USE_FC_TO_LINK is used.



Chapter 1: Creating R packages 28

-mfpmath=sse’ on ‘ix86’ platforms using gfortran. Note that this is not an
additional flag to be used as part of PKG_FFLAGS, but a replacement for FFLAGS.
See the example later in this section.

Setting certain macros in Makevars will prevent R CMD SHLIB setting them: in particular
if Makevars sets ‘OBJECTS’ it will not be set on the make command line. This can be useful
in conjunction with implicit rules to allow other types of source code to be compiled and
included in the shared object. It can also be used to control the set of files which are
compiled, either by excluding some files in src or including some files in subdirectories. For
example

OBJECTS = 4dfp/endianio.o 4dfp/Getifh.o R4dfp-object.o

Note that Makevars should not normally contain targets, as it is included before the
default makefile and make will call the first target, intended to be all in the default makefile.
If you really need to circumvent that, use a suitable (phony) target all before any actual
targets in Makevars. [win]: for example package fastICA (https://CRAN.R-project.org/
package=fastICA) used to have

PKG_LIBS = @BLAS_LIBS@
SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)
all: $(SHLIB)

slamc.o: slamc.f
$(FC) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

needed to ensure that the LAPACK routines find some constants without infinite looping.
The Windows equivalent was

all: $(SHLIB)

slamc.o: slamc.f
$(FC) $(SAFE_FFLAGS) -c -o slamc.o slamc.f
(since the other macros are all empty on that platform, and R’s internal BLAS was not
used). Note that the first target in Makevars will be called, but for back-compatibility it is
best named all.
If you want to create and then link to a library, say using code in a subdirectory, use

something like

.PHONY: all mylibs

all: $(SHLIB)
$ (SHLIB): mylibs

mylibs:
(cd subdir; $(MAKE))
Be careful to create all the necessary dependencies, as there is no guarantee that the de-
pendencies of all will be run in a particular order (and some of the CRAN build machines
use multiple CPUs and parallel makes). In particular,

all: mylibs


https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=fastICA

Chapter 1: Creating R packages 29

does not suffice. GNU make does allow the construct

.NOTPARALLEL: all
all: mylibs $(SHLIB)

but that is not portable. dmake and pmake allow the similar .NO_PARALLEL, also not
portable: some variants of pmake accept .NOTPARALLEL as an alias for .NO_PARALLEL.

Note that on Windows it is required that Makevars[.win] does create a DLL: this is
needed as it is the only reliable way to ensure that building a DLL succeeded. If you want
to use the src directory for some purpose other than building a DLL, use a Makefile.win
file.

It is sometimes useful to have a target ‘clean’ in Makevars or Makevars.win: this will
be used by R CMD build to clean up (a copy of) the package sources. When it is run by
build it will have fewer macros set, in particular not $ (SHLIB), nor $ (0BJECTS) unless set
in the file itself. It would also be possible to add tasks to the target ‘shlib-clean’ which
is run by R CMD INSTALL and R CMD SHLIB with options -—clean and --preclean.

If you want to run R code in Makevars, e.g. to find configuration information, please do
ensure that you use the correct copy of R or Rscript: there might not be one in the path
at all, or it might be the wrong version or architecture. The correct way to do this is via

"$ (R_HOME) /bin$ (R_ARCH_BIN) /Rscript" filename
"$ (R_HOME) /bin$ (R_ARCH_BIN) /Rscript" -e ’R expression’

where $(R_ARCH_BIN) is only needed currently on Windows.

Environment or make variables can be used to select different macros for 32- and 64-bit
code, for example (GNU make syntax, allowed on Windows)

ifeq "$(WIN)" "64"

PKG_LIBS = value for 64-bit Windows
else

PKG_LIBS = value for 32-bit Windows
endif

On Windows there is normally a choice between linking to an import library or directly
to a DLL. Where possible, the latter is much more reliable: import libraries are tied to a
specific toolchain, and in particular on 64-bit Windows two different conventions have been
commonly used. So for example instead of

PKG_LIBS = -L$(XML_DIR)/1lib -1xml2
one can use
PKG_LIBS = -L$(XML_DIR)/bin -1xml2

since on Windows -1xxx will look in turn for

libxxx.dll.a
xxx.dll.a
libxxx.a
xxx.1lib
libxxx.d1l1l
xxx.d1ll
where the first and second are conventionally import libraries, the third and fourth often

static libraries (with .1ib intended for Visual C++), but might be import libraries. See for
example https://sourceware.org/binutils/docs-2.20/1d/WIN32. . html1#WIN32.


https://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32

Chapter 1: Creating R packages 30

The fly in the ointment is that the DLL might not be named libxxx.d1l, and in fact
on 32-bit Windows there is a 1ibxml12.d11 whereas on one build for 64-bit Windows the
DLL is called 1ibxm12-2.d11. Using import libraries can cover over these differences but
can cause equal difficulties.

If static libraries are available they can save a lot of problems with run-time finding of
DLLs, especially when binary packages are to be distributed and even more when these
support both architectures. Where using DLLs is unavoidable we normally arrange (via
configure.win) to ship them in the same directory as the package DLL.

1.2.1.1 OpenMP support
There is some support for packages which wish to use OpenMP34. The make macros

SHLIB_OPENMP_CFLAGS
SHLIB_OPENMP_CXXFLAGS
SHLIB_OPENMP_FFLAGS

are available for use in src/Makevars or src/Makevars.win. Include the appropriate macro
in PKG_CFLAGS, PKG_CXXFLAGS and so on, and also in PKG_LIBS (but see below for Fortran).
C/C++ code that needs to be conditioned on the use of OpenMP can be used inside #ifdef
_OPENMP: note that some toolchains used for R (including Apple’s for macOS and some
others using clang®’) have no OpenMP support at all, not even omp.h.

For example, a package with C code written for OpenMP should have in src/Makevars
the lines

PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

Note that the macro SHLIB_OPENMP_CXXFLAGS applies to the default C++ compiler and
not necessarily to the C++17/20 compiler: users of the latter should do their own configure
checks. If you do use your own checks, make sure that OpenMP support is complete by
compiling and linking an OpenMP-using program: on some platforms the runtime library
is optional and on others that library depends on other optional libraries.

Some care is needed when compilers are from different families which may use different
OpenMP runtimes (e.g. clang vs GCC including gfortran, although it is often possible
to use the clang runtime with GCC but not wvice versa: however gfortran >= 9 may
generate calls not in the clang runtime). For a package with Fortran code using OpenMP
the appropriate lines are

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)

PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)
as the C compiler will be used to link the package code. There are platforms on which this
does not work for some OpenMP-using code and installation will fail. Since R >= 3.6.2 the
best alternative for a package with only Fortran sources using OpenMP is to use

USE_FC_TO_LINK =

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)

34 https://www.openmp .org/, https://en.wikipedia. org/wiki/OpenMP, https://hpc.1llnl. gov/
training/tutorials/openmp-tutorial

35 Default builds of clang 3.8.0 and later have support for OpenMP, but the 1libomp run-time library may
not be installed.


https://www.openmp.org/
https://en.wikipedia.org/wiki/OpenMP
https://hpc.llnl.gov/training/tutorials/openmp-tutorial
https://hpc.llnl.gov/training/tutorials/openmp-tutorial

Chapter 1: Creating R packages 31

PKG_LIBS = $(SHLIB_OPENMP_FFLAGS)

in src/Makevars or src/Makevars.win. Note however, that when this is used $ (FLIBS)
should not be included in PKG_LIBS since it is for linking Fortran-compiled code by the C
compiler.

Common platforms may inline all OpenMP calls and so tolerate the omission of the
OpenMP flag from PKG_LIBS, but this usually results in an installation failure with a
different compiler or compilation flags. So cross-check that e.g. ~fopenmp appears in the
linking line in the installation logs.

It is not portable to use OpenMP with more than one of C, C++ and Fortran in a single
package since it is not uncommon that the compilers are of different families.

For portability, any C/C++ code using the omp_* functions should include the omp.h
header: some compilers (but not all) include it when OpenMP mode is switched on (e.g.
via flag ~fopenmp).

There is nothing®® to say what version of OpenMP is supported: version 4.0 (and much
of 4.5 or 5.0) is supported by recent versions of the Linux, Windows and Solaris plat-
forms, but portable packages cannot assume that end users have recent versions. Ap-
ple clang on macOS has no OpenMP support. https://www.openmp.org/resources/
openmp-compilers-tools/ gives some idea of what compilers support what versions.

Rarely, using OpenMP with clang on Linux generates calls in libatomic, resulting in
loading messages like

undefined symbol: __atomic_compare_exchange
undefined symbol: __atomic_load

The workaround is to link with -latomic (having checked it exists).

The performance of OpenMP varies substantially between platforms. The Windows
implementation has substantial overheads, so is only beneficial if quite substantial tasks are
run in parallel. Also, on Windows new threads are started with the default®” FPU control
word, so computations done on OpenMP threads will not make use of extended-precision
arithmetic which is the default for the main process.

Do not include these macros unless your code does make use of OpenMP (possibly for
C++ via included external headers): this can result in the OpenMP runtime being linked
in, threads being started, . . ..

Calling any of the R API from threaded code is ‘for experts only’ and strongly discour-
aged. Many functions in the R API modify internal R data structures and might corrupt
these data structures if called simultaneously from multiple threads. Most R API functions
can signal errors, which must only happen on the R main thread. Also, external libraries
(e.g. LAPACK) may not be thread-safe.

Packages are not standard-alone programs, and an R process could contain more than
one OpenMP-enabled package as well as other components (for example, an optimized
BLAS) making use of OpenMP. So careful consideration needs to be given to resource
usage. OpenMP works with parallel regions, and for most implementations the default is to

36 In most implementations the _OPENMP macro has value a date which can be mapped to an OpenMP
version: for example, value 201307 is the date of version 4.0 (July 2013). However this may be used to
denote the latest version which is partially supported, not that which is fully implemented.

37 Windows default, not MinGW-w64 default.


https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/

Chapter 1: Creating R packages 32

use as many threads as ‘CPUs’ for such regions. Parallel regions can be nested, although it
is common to use only a single thread below the first level. The correctness of the detected
number of ‘CPUs’ and the assumption that the R process is entitled to use them all are
both dubious assumptions. One way to limit resources is to limit the overall number of
threads available to OpenMP in the R process: this can be done via environment variable
OMP_THREAD_LIMIT, where implemented.?® Alternatively, the number of threads per region
can be limited by the environment variable OMP_NUM_THREADS or API call omp_set_num_
threads, or, better, for the regions in your code as part of their specification. E.g. R
uses™?

#pragma omp parallel for num_threads(nthreads)
That way you only control your own code and not that of other OpenMP users.

Note that setting environment variables to control OpenMP is implementation-
dependent and may need to be done outside the R process or before any use of OpenMP
(which might be by another process or R itself). Also, implementation-specific variables
such as KMP_THREAD_LIMIT might take precedence.

1.2.1.2 Using pthreads

There is no direct support for the POSIX threads (more commonly known as pthreads):
by the time we considered adding it several packages were using it unconditionally so it

seems that nowadays it is universally available on POSIX operating systems (hence not
Windows).

For reasonably recent versions of gcc and clang the correct specification is

PKG_CPPFLAGS = -pthread
PKG_LIBS = -pthread

(and the plural version is also accepted on some systems/versions). For other platforms the
specification is

PKG_CPPFLAGS = -D_REENTRANT

PKG_LIBS = -lpthread

(and note that the library name is singular). This is what -pthread does on all known
current platforms (although earlier versions of OpenBSD used a different library name).

For a tutorial see https://hpc-tutorials.llnl.gov/posix/.

POSIX threads are not normally used on Windows, which has its own native concepts
of threads. However, there are two projects implementing pthreads on top of Windows,
pthreads-w32 and winpthreads (part of the MinGW-w64 project).

Whether Windows toolchains implement pthreads is up to the toolchain provider. A
make variable SHLIB_PTHREAD_FLAGS is available for use in src/Makevars.win: this should
be included in both PKG_CPPFLAGS (or the Fortran compiler flags) and PKG_LIBS.

The presence of a working pthreads implementation cannot be unambiguously deter-
mined without testing for yourself: however, that ‘_REENTRANT’ is defined*® in C/C++ code
is a good indication.

38 Which it was at the time of writing with GCC, Oracle, Intel and Clang compilers. The count may
include the thread running the main process.

39 Be careful not to declare nthreads as const int: the Oracle compiler requires it to be ‘an lvalue’.
40 some Windows toolchains had the typo ‘_REENTRANCE’ instead.


https://hpc-tutorials.llnl.gov/posix/

Chapter 1: Creating R packages 33

Note that not all pthreads implementations are equivalent as parts are optional (see
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html): for
example, macOS lacks the ‘Barriers’ option.

See also the comments on thread-safety and performance under OpenMP: on all known
R platforms OpenMP is implemented via pthreads and the known performance issues are
in the latter.

1.2.1.3 Compiling in sub-directories
Package authors fairly often want to organize code in sub-directories of src, for example if

they are including a separate piece of external software to which this is an R interface.

One simple way is simply to set OBJECTS to be all the objects that need to be com-
piled, including in sub-directories. For example, CRAN package RSiena (https://CRAN.
R-project.org/package=RSiena) has

SOURCES

$(wildcard data/*.cpp network/*.cpp utils/*.cpp model/*.cpp model/*/*.cpp model/*/*/*.cpp)

OBJECTS = sienaO7utilities.o sienaO7internals.o sienaO7setup.o sienaO7models.o $(SOURCES:.cpp=.0)

One problem with that approach is that unless GNU make extensions are used, the source
files need to be listed and kept up-to-date. As in the following from CRAN package lossDev
(https://CRAN.R-project.org/package=1lossDev):
OBJECTS.samplers = samplers/ExpandableArray.o samplers/Knots.o \
samplers/RJumpSpline.o samplers/RJumpSplineFactory.o \
samplers/RealSlicerOV.o samplers/SliceFactoryOV.o samplers/MNorm.o
OBJECTS.distributions = distributions/DSpline.o \
distributions/DChisqrOV.o distributions/DTOV.o \

distributions/DNormOV.o distributions/DUnifOV.o distributions/RScalarDist.o
0BJECTS.root = RJump.o

OBJECTS = $(OBJECTS.samplers) $(0BJECTS.distributions) $(0BJECTS.root)

Where the subdirectory is self-contained code with a suitable makefile, the best approach
is something like

PKG_LIBS = -LCsdp/lib -lsdp $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)
$(SHLIB): Csdp/lib/libsdp.a

Csdp/1lib/libsdp.a:
@(cd Csdp/lib && $(MAKE) libsdp.a \
CC="$(CC)" CFLAGS="$(CFLAGS) $(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")

Note the quotes: the macros can contain spaces, e.g. CC = "gcc -m64 -std=gnu99". Several
authors have forgotten about parallel makes: the static library in the subdirectory must be
made before the shared object ($(SHLIB)) and so the latter must depend on the former.
Others forget the need*! for position-independent code.

We really do not recommend using src/Makefile instead of src/Makevars, and as the
example above shows, it is not necessary.

41 A few OSes (AIX, Windows) do not need special flags for such code, but most do—although compilers
will often generate PIC code when not asked to do so.


https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html
https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=lossDev
https://CRAN.R-project.org/package=lossDev

Chapter 1: Creating R packages 34

1.2.2 Configure example

It may be helpful to give an extended example of using a configure script to create a
src/Makevars file: this is based on that in the RODBC (https://CRAN.R-project.org/
package=R0ODBC) package.

The configure.ac file follows: configure is created from this by running autoconf in
the top-level package directory (containing configure.ac).

AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option
odbc_mgr=""
AC_ARG_WITH([odbc-manager],
AC_HELP_STRING([--with-odbc-manager=MGR],
[specify the ODBC manager, e.g. odbc or iodbcl),
[odbc_mgr=$withvall)

if test "$odbc_mgr" = "odbc" ; then
AC_PATH_PROGS (ODBC_CONFIG, odbc_config)
fi

dnl Select an optional include path, from a configure option
dnl or from an environment variable.
AC_ARG_WITH([odbc-include],
AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],
[the location of ODBC header files]),
[odbc_include_path=$withvall)
RODBC_CPPFLAGS="-I."
if test [ -n "$odbc_include_path" ] ; then
RODBC_CPPFLAGS="-I. -I${odbc_include_path}"
else
if test [ -n "${ODBC_INCLUDE}" ] ; then
RODBC_CPPFLAGS="-I. -I${0DBC_INCLUDE}"
fi
fi

dnl ditto for a library path
AC_ARG_WITH([odbc-1ib],
AC_HELP_STRING([--with-odbc-1ib=LIB_PATH],
[the location of ODBC libraries]),
[odbc_lib_path=$withvall)
if test [ -n "$odbc_lib_path" ] ; then
LIBS="-L$odbc_lib_path ${LIBS}"
else
if test [ -n "${ODBC_LIBS}" ] ; then
LIBS="-L${0DBC_LIBS} ${LIBS}"
else
if test -n "${0DBC_CONFIG}"; then
odbc_lib_path=‘odbc_config --1libs | sed s/-lodbc//¢
LIBS="${odbc_lib_path} ${LIBS}"
fi
fi
fi

dnl Now find the compiler and compiler flags to use
: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"


https://CRAN.R-project.org/package=RODBC
https://CRAN.R-project.org/package=RODBC

Chapter 1: Creating R packages 35

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC°
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®

if test -n "${0DBC_CONFIG}"; then
RODBC_CPPFLAGS=‘odbc_config --cflags®

fi

CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

dnl Check the headers can be found
AC_CHECK_HEADERS(sql.h sqlext.h)
if test "${ac_cv_header_sql_h}" = no ||
test "${ac_cv_header_sqlext_h}" = no; then
AC_MSG_ERROR("0DBC headers sql.h and sqlext.h not found")
fi

dnl search for a library containing an ODBC function
if test [ -n "${odbc_mgr}" ] ; then
AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,
AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))
else
AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,
AC_MSG_ERROR("no ODBC driver manager found"))
fi

dnl for 64-bit ODBC need SQL[U]JLEN, and it is unclear where they are defined.
AC_CHECK_TYPES ([SQLLEN, SQLULEN], , , [# include <sql.h>])

dnl for unixODBC header

AC_CHECK_SIZEOF (long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS

AC_SUBST (RODBC_CPPFLAGS)

AC_SUBST(LIBS)

AC_CONFIG_HEADERS([src/config.hl)

dnl and do substitution in the src/Makevars.in and src/config.h
AC_CONFIG_FILES([src/Makevars])

AC_OUTPUT

where src/Makevars.in would be simply

PKG_CPPFLAGS = QRODBC_CPPFLAGS@
PKG_LIBS = QLIBS@

A user can then be advised to specify the location of the ODBC driver manager files by
options like (lines broken for easier reading)

R CMD INSTALL \
--configure-args=’--with-odbc-include=/opt/local/include \
--with-odbc-1ib=/opt/local/1lib --with-odbc-manager=iodbc’ \
RODBC

or by setting the environment variables ODBC_INCLUDE and ODBC_LIBS.

1.2.3 Using F9x code

R assumes that source files with extension .f are fixed-form Fortran 90 (which includes
Fortran 77), and passes them to the compiler specified by macro ‘FC’. On known platforms



Chapter 1: Creating R packages 36

the Fortran compiler will also accept free-form Fortran 90/95 code with extension .£90 or
.95, but those are not used by R itself so this is not required.

The same compiler is used*? for both fixed-form and free-form Fortran code (with differ-
ent file extensions and possibly different flags). Macro PKG_FFLAGS can be used for package-
specific flags: for the un-encountered case that both are included in a single package and
that different flags are needed for the two forms, macro PKG_FCFLAGS is also available for
free-form Fortran.

The code used to build R allows a ‘Fortran 90’ compiler to be selected as ‘FC’, so
platforms might be encountered which only support Fortran 90. However, Fortran 95 is
widely supported.

Some compilers specified by ‘FC’ will accept Fortran 2003, 2008 or 2018 code: such code
should still use file extension .£90 or .£95. Most platforms use gfortran where you may
need to include -std=£2003, -std=£2008 or (from version 8) -std=£2018 in PKG_FFLAGS or
PKG_FCFLAGS: the default is ‘GNU Fortran’, Fortran 95 with non-standard extensions. The
Oracle £95 compiler ‘accepts some Fortran 2003/ 8 features’ (search for ‘Oracle Developer
Studio 12.6: Fortran User’s Guide’ and look for A§4.6). Intel Fortran has full Fortran 2008
support from version 17.0, and some 2018 support in version 16.0 and more in version 19.0.

Modern versions of Fortran support modules, whereby compiling one source file creates a
module file which is then included in others. (Module files typically have a .mod extension:
they do depend on the compiler used and so should never be included in a package.) This
creates a dependence which make will not know about and often causes installation with a
parallel make to fail. Thus it is necessary to add explicit dependencies to src/Makevars to
tell make the constraints on the order of compilation. For example, if file iface.f90 creates
a module ‘iface’ used by files cmi.f90 and dmi.f90 then src/Makevars needs to contain
something like

cmi.o dmi.o: iface.o

Note that it is not portable (although some platforms do accept it) to define a module of
the same name in multiple source files.

1.2.4 Using C++ code

R can be built without a C++ compiler although one is available (but not necessarily in-
stalled) on all known R platforms. As from R 4.0.0 a C++ compiler will be selected only if
it conforms to the 2011 standard (‘C++11’). A minor update*® (‘C++14’) was published in
December 2014 and will be used by default as from R 4.1.0 if supported. Further revisions
‘C++17’ (in December 2017), and ‘C++20’ (with many new features in December 2020) have
been published since.

What standard a C++ compiler aims to support can be hard to determine: the value**
of __cplusplus may help but some compilers use it to denote a standard which is partially
supported and some the latest standard which is (almost) fully supported.

42
43

for versions of R since 3.6.0.

Some changes are linked from https: / / isocpp . org / std / standing-documents /
sd-6-sglO-feature-test-recommendations: there were also additional deprecations.

Values 201103L, 201402L and 201703L are most commonly used for C++11, C++14 and C++17 respectively,

but some compilers set 1L. At the time of writing there was no official value for C++20, but some compilers
are using 202002L, others 201703L.

44


https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

Chapter 1: Creating R packages 37

The webpage https://en.cppreference.com/w/cpp/compiler_support gives some
information on which compilers are known to support recent C++ features.

Different versions of R have specified different minimum C++ standards, so for maximal
portability a package should specify the standard it requires. In order to specify C++11
code in a package, Makevars file (or Makevars.win on Windows) should include the line

CXX_STD = CXX11
Compilation and linking will then be done with the C++11 compiler (if any).

Packages without a src/Makevars or src/Makefile file may specify that they require
C++11 for code in the src directory by including ‘C++11’ in the ‘SystemRequirements’ field
of the DESCRIPTION file, e.g.

SystemRequirements: C++11

If a package does have a src/Makevars[.win] file then setting the make variable
‘CXX_STD’ is preferred, as it allows R CMD SHLIB to work correctly in the package’s src
directory.

If a package using C++ has a configure script it is essential that it selects the correct
C++ standard, via something like

CXX11=¢"${R_HOME}/bin/R" CMD config CXX11°
if test -z "$CXX11"; then
AC_MSG_ERROR([No C++11 compiler is available])
fi
CXX11STD=¢"${R_HOME}/bin/R" CMD config CXX11STD‘
CXX="${CXX11} ${CXX11STD}"
CXXFLAGS=‘"${R_HOME}/bin/R" CMD config CXX11FLAGS‘
AC_LANG(C++)
if C++11 was specified, but using CXX instead of CXX11 if no standard was specified.

If you want to compile C++ code in a subdirectory, make sure you pass down the macros
to specify the appropriate compiler, e.g. in src/Makevars
sublibs:
@(cd libs && $(MAKE) \
CXX="$(CXX11) $(CXX11STD)" CXXFLAGS="$(CXX11FLAGS) $(CXX11PICFLAGS)")

Note that the mechanisms described here specify C++11 for code compiled by R CMD
SHLIB as used by default by R CMD INSTALL. They do not necessarily apply if there is a
src/Makefile file, nor to compilation done in vignettes or via other packages.

Support for a C++14 compiler (where available) has been in R since version 3.4.0. Similar
considerations to C++11 apply, with the variables associated with the C++14 compiler using
the prefix ‘CXX14’ instead of ‘CXX11’. For example, to use C++14 code in a package, the
package’s Makevars file (or Makevars.win on Windows) should include the line

CXX_STD = CXX14

Essentially complete C++14 support is available from GCC 5, LLVM clang 3.4 and
currently-used versions of Apple clang.

Code needing C++14 features can check for their presence via ‘SD-6 feature tests’#>. Such
a check could be

45 See https://isocpp . org/std/standing-documents/sd-6-sglO-feature-test-recommendations or
https://en.cppreference.com/w/cpp/experimental/feature_test. It seems a reasonable assumption


https://en.cppreference.com/w/cpp/compiler_support
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://en.cppreference.com/w/cpp/experimental/feature_test

Chapter 1: Creating R packages 38

#include <memory> // header where this is defined

#if defined(__cpp_lib_make_unique) && (__cpp_lib_make_unique >= 201304)
using std::make_unique;

#else

// your emulation

#endif

Note that Windows builds prior to R 4.0.0 used g++ 4.9.x which had only partial C++14
support, and the flag to obtain that support was not included in the default Windows build
of R — one could try something like

CXX14="$ (BINPREF)g++ $(M_ARCH)"
CXX14FLAGS="-02 -Wall"
CXX14STD=-std=gnuly

in HOME/ .R/Makevars.win. The g++ version used from R 4.0.0 supports C++14 with flag
-std=gnul4 and for back-compatibility -std=gnuly.

C++17 (as from R 3.4.0) and C++20 (as from R 4.0.0) can be specified in an analogous
way (replacing 14 by 17 or 20) but compiler/OS support is platform-dependent. Some
C++17 and C++20 support is available with the default builds of R on macOS and Windows
as from R 4.0.0. Much of g++’s support for C++17 needs version 7 or later: that is more
recent than some still-current Linux distributions and the OpenCSW compilers for Solaris.

Note that C++17 or C++20 ‘support’ does not mean complete support: use feature tests
as well as resources such as https://en.cppreference.com/w/cpp/compiler_support,
https://gcc.gnu.org/projects/cxx-status.html and https://libcxx.1llvm.org/
Cxx1zStatus.html to see if the features you want to use are widely implemented.

A requirement of C++17 or later should always be declared in the ‘SystemRequirements’
field (as well as in src/Makevars or src/Makefile) so this is shown on the package’s
summary pages on CRAN or similar.

1.3 Checking and building packages

Before using these tools, please check that your package can be installed. R CMD check will
inter alia do this, but you may get more detailed error messages doing the install directly.

If your package specifies an encoding in its DESCRIPTION file, you should run these tools
in a locale which makes use of that encoding: they may not work at all or may work
incorrectly in other locales (although UTF-8 locales will most likely work).

Note: R CMD check and R CMD build run R processes with ——vanilla in which
none of the user’s startup files are read. If you need R_LIBS set (to find packages
in a non-standard library) you can set it in the environment: also you can use the
check and build environment files (as specified by the environment variables R_
CHECK_ENVIRON and R_BUILD_ENVIRON; if unset, files'® “/.R/check.Renviron
and ~/.R/build.Renviron are used) to set environment variables when using
these utilities.

that any compiler promising some C++14 conformance will provide these—e.g. g++ 4.9.x did but 4.8.5
did not.

46 On systems which use sub-architectures, architecture-specific versions such as ~/.R/check.Renviron.i386
take precedence.


https://en.cppreference.com/w/cpp/compiler_support
https://gcc.gnu.org/projects/cxx-status.html
https://libcxx.llvm.org/Cxx1zStatus.html
https://libcxx.llvm.org/Cxx1zStatus.html

Chapter 1: Creating R packages 39

Note to Windows users: R CMD build may make use of the Windows toolset
(see the “R Installation and Administration” manual) if present and in your
path, and it is required for packages which need it to install (including those
with configure.win or cleanup.win scripts or a src directory) and e.g. need
vignettes built.

You may need to set the environment variable TMPDIR to point to a suitable
writable directory with a path not containing spaces — use forward slashes for
the separators. Also, the directory needs to be on a case-honouring file system
(some network-mounted file systems are not).

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether source R packages work
correctly. It can be run on one or more directories, or compressed package tar archives
with extension .tar.gz, .tgz, .tar.bz2 or .tar.xz.

It is strongly recommended that the final checks are run on a tar archive prepared by R
CMD build.

This runs a series of checks, including

1. The package is installed. This will warn about missing cross-references and duplicate
aliases in help files.

2. The file names are checked to be valid across file systems and supported operating
system platforms.

3. The files and directories are checked for sufficient permissions (Unix-alikes only).

4. The files are checked for binary executables, using a suitable version of file if avail-
able*”. (There may be rare false positives.)

5. The DESCRIPTION file is checked for completeness, and some of its entries for correct-
ness. Unless installation tests are skipped, checking is aborted if the package dependen-
cies cannot be resolved at run time. (You may need to set R_LIBS in the environment if
dependent packages are in a separate library tree.) One check is that the package name
is not that of a standard package, nor one of the defunct standard packages (‘ctest’,
‘eda’, ‘1gs’, ‘mle’, ‘modreg’, ‘mva’, ‘nls’, ‘stepfun’ and ‘ts’). Another check is that all
packages mentioned in library or requires or from which the NAMESPACE file imports
or are called via :: or ::: are listed (in ‘Depends’, ‘Imports’, ‘Suggests’): this is not
an exhaustive check of the actual imports.

6. Available index information (in particular, for demos and vignettes) is checked for
completeness.

7. The package subdirectories are checked for suitable file names and for not being empty.
The checks on file names are controlled by the option --check-subdirs=value. This
defaults to ‘default’, which runs the checks only if checking a tarball: the default can
be overridden by specifying the value as ‘yes’ or ‘no’. Further, the check on the src
directory is only run if the package does not contain a configure script (which corre-
sponds to the value ‘yes-maybe’) and there is no src/Makefile or src/Makefile.in.

47T A suitable file.exe is part of the Windows toolset: it checks for gfile if a suitable file is not found:
the latter is available in the OpenCSW collection for Solaris at https://www.opencsw.org/. The source
repository is http://ftp.astron.com/pub/file/.


https://www.opencsw.org/
http://ftp.astron.com/pub/file/

Chapter 1: Creating R packages 40

10.

11.

12.

13.

14.

15.

16.

To allow a configure script to generate suitable files, files ending in ‘.in’ will be

allowed in the R directory.

A warning is given for directory names that look like R package check directories —
many packages have been submitted to CRAN containing these.

The R files are checked for syntax errors. Bytes which are non-ASCII are reported as
warnings, but these should be regarded as er